Have a personal or library account? Click to login
Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds Cover

Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds

Open Access
|Nov 2021

References

  1. Bams, D., Otten, R., & Ramezanifar, E. (2015). Mutual Fund Objective Misclassification: Causes and Consequences. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2648375
  2. Białous, K., & Truszkowski, J. (2009). Analiza stylu inwestowania polskich funduszy inwestycyjnych. Ruch Prawniczy, Ekonomiczny i Socjologiczny, LXXI(4), 195–223.
  3. Broomhead, B. S., & Lowe, D. (1988). Multivariable Functional Interpolation and Adaptive Networks. In Complex Systems 2 (pp. 321–355). https://www.complex-systems.com/abstracts/v02_i03_a05/
  4. Brown, K. C., Harlow, W. V., & Zhang, H. (2015). Investment Style Volatility and Mutual Fund Performance. Working Paper. http://faculty.mccombs.utexas.edu/keith.brown/Research/stylevolatility-wp.pdf
  5. Brown, S. J., & Goetzmann, W. N. (1997). Mutual fund styles. Journal of Financial Economics, 43(3), 373–399. https://doi.org/10.1016/S0304-405X(96)00898-7
  6. Cao, C., Iliev, P., & Velthuis, R. (2017). Style drift: Evidence from small-cap mutual funds. Journal of Banking and Finance, 78, 42–57. https://doi.org/10.1016/j.jbankfin.2017.01.009
  7. Castellanos, A. R., & Alonso, B. V. (2004). Spanish Mutual Fund Misclassification. The Journal of Investing, 14(1), 41–51. https://www.academia.edu/24331925/Spanish_Mutual_Fund_Misclassification
  8. Chiang, W. C., Urban, T. L., & Baldridge, G. W. (1996). A neural network approach to mutual fund net asset value forecasting. Omega, 24(2), 205–215. https://doi.org/10.1016/0305-0483(95)00059-3
  9. Chua, A. K. P., & Tam, O. K. (2020). The shrouded business of style drift in active mutual funds. Journal of Corporate Finance, 64, 101667. https://doi.org/10.1016/j.jcorpfin.2020.101667
  10. Cremers, K. J. M., & Petajisto, A. (2009). How Active Is Your Fund Manager A New Measure That Predicts Performance. Review of Financial Studies, 22(9), 3329–3365. https://doi.org/10.1093/rfs/hhp057
  11. Daniel, K., Grinblatt, M., Titman, S., & Wermers, R. (1997). Measuring Mutual Fund Performance with Characteristic-Based Benchmarks. The Journal of Finance, 52(3), 1035–1058. https://doi.org/10.1111/j.1540-6261.1997.tb02724.x
  12. DiBartolomeo, D., & Witkowski, E. (1997). Mutual fund misclassification: Evidence based on style analysis. Financial Analysts Journal, 53(5), 32–43. https://doi.org/10.2469/faj.v53.n5.2115
  13. European Commission. (2018). Study on the distribution systems of retail investment products. https://ec.europa.eu/info/publications/180425-retail-investment-products-distribution-systems_en
  14. Ferson, W. E., & Kim, M. S. (2012). The factor structure of mutual fund flows. International Journal of Portfolio Analysis and Management, 1(2), 112. https://doi.org/10.1504/ijpam.2012.049214
  15. Gandhmal, D. P., & Kumar, K. (2019). Systematic analysis and review of stock market prediction techniques. Computer Science Review, 34, 100190. https://doi.org/10.1016/j.cosrev.2019.08.001
  16. Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. Review of Financial Studies, 33(5), 2223–2273. https://doi.org/10.1093/rfs/hhaa009
  17. Herrmann, U., Rohleder, M., & Scholz, H. (2016). Does style-shifting activity predict performance? Evidence from equity mutual funds. Quarterly Review of Economics and Finance, 59, 112–130. https://doi.org/10.1016/j.qref.2015.03.003
  18. Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting mutual fund performance using artificial neural networks. Omega, 27(3), 373–380. https://doi.org/10.1016/S0305-0483(98)00048-6
  19. Investment Company Institute. (2020). 2020 ICI Fact Book. https://www.ici.org
  20. Jank, S. (2012). Mutual fund flows, expected returns, and the real economy. Journal of Banking and Finance, 36(11), 3060–3070. https://doi.org/10.1016/j.jbankfin.2012.07.004
  21. Jiang, J., Liao, L., Wang, Z., & Xiang, H. (2020). Financial literacy and retail investors’ financial welfare: Evidence from mutual fund investment outcomes in China. Pacific Basin Finance Journal, 59 (November), 101242. https://doi.org/10.1016/j.pacfin.2019.101242
  22. Jung, D., Glaser, F., & Köpplin, W. (2019). Robo-advisory: Opportunities and risks for the future of financial advisory. In Contributions to Management Science (pp. 405–427). Springer. https://doi.org/10.1007/978-3-319-95999-3_20
  23. Kim, M., Shukla, R., & Tomas, M. (2000). Mutual fund objective misclassification. Journal of Economics and Business, 52(4), 309–323. https://doi.org/10.1016/s0148-6195(00)00022-9
  24. Kim, T. H., White, H., & Stone, D. (2005). Asymptotic and Bayesian confidence intervals for sharpe-style weights. Journal of Financial Econometrics, 3(3), 315–343. https://doi.org/10.1093/jjfinec/nbi015
  25. Kopsch, F., Song, H. S., & Wilhelmsson, M. (2015). Determinants of mutual fund flows. Managerial Finance, 41(1), 10–25. https://doi.org/10.1108/MF-06-2013-0161
  26. Mason, A., McGroarty, F., & Thomas, S. (2012). Style analysis for diversified US equity funds. Journal of Asset Management, 13(3), 170–185. https://doi.org/10.1057/jam.2012.6
  27. Mohanti, D., & Priyan, P. K. (2018). Style-exposure analysis of large-cap equity mutual funds in India. IIMB Management Review, 30(3), 219–228. https://doi.org/10.1016/j.iimb.2018.01.010
  28. Moody, J., & Darken, C. J. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1(2), 281–294. https://doi.org/10.1162/neco.1989.1.2.281
  29. Moreno, D., Marco, P., & Olmeda, I. (2006). Self-organizing maps could improve the classification of Spanish mutual funds. European Journal of Operational Research, 174(2), 1039–1054. https://ideas.repec.org/a/eee/ejores/v174y2006i2p1039-1054.html
  30. Müller, S., & Weber, M. (2010). Financial Literacy and Mutual Fund Investments: Who Buys Actively Managed Funds? Schmalenbach Business Review, 62(2), 126–153. https://doi.org/10.1007/bf03396802
  31. Pan, W. T., Han, S. Z., Yang, H. L., & Chen, X. Y. (2019). Prediction of mutual fund net value based on data mining model. Cluster Computing, 22, 9455–9460. https://doi.org/10.1007/s10586-018-2272-2
  32. Pandurang, G. D., & Kumar, K. (2019, February 1). Ensemble Computations on Stock Market: A Standardized Review for Future Directions. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019. https://doi.org/10.1109/ICECCT.2019.8869158
  33. Qureshi, F., Khan, H. H., Rehman, I. U., Ghafoor, A., & Qureshi, S. (2019). Mutual fund flows and investors’ expectations in BRICS economies: Implications for international diversification. Economic Systems, 43(1), 130–150. https://doi.org/10.1016/j.ecosys.2018.09.003
  34. Rout, M., Koudjonou, K. M., & Satapathy, S. C. (2020). Analysis of net asset value prediction using low complexity neural network with various expansion techniques. Evolutionary Intelligence, 0123456789. https://doi.org/10.1007/s12065-020-00365-0
  35. Sarnowski, K. (2003). Klasyfikacja funduszy inwestycyjnych za pomocą jednoczynnikowej analizy wariancji. Prace Naukowe Akademii Ekonomicznej We Wrocławiu, nr 991 Inwestycje finansowe i ubezpieczenia-tendencje światowe a polski rynek, 568–574.
  36. Sensoy, B. A. (2009). Performance evaluation and self-designated benchmark indexes in the mutual fund industry. Journal of Financial Economics, 92(1), 25–39. https://doi.org/10.1016/j.jfineco.2008.02.011
  37. Sha, Y. (2020). The devil in the style: Mutual fund style drift, performance and common risk factors. Economic Modelling, 86 (October), 264–273. https://doi.org/10.1016/j.econmod.2019.10.004
  38. Sharpe, W. (1992). Asset allocation: Management style and performance measurement. The Journal of Portfolio Management, 18(2), 7–19. https://doi.org/10.3905/jpm.1992.409394
  39. Simon, H. (1994). Neural Networks: A Comprehensive Foundation. Macmillan Publishing.
  40. Wang, K., & Huang, S. (2010). Using fast adaptive neural network classifier for mutual fund performance evaluation. Expert Systems with Applications, 37(8), 6007–6011. https://doi.org/10.1016/j.eswa.2010.02.003
  41. Wermers, R. R. (2012). Matter of Style: The Causes and Consequences of Style Drift in Institutional Portfolios. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2024259
  42. Zamojska-Adamczak, A. (2005). Style inwestowania jako kryterium klasyfikacji funduszy inwestycyjnych (Investment styles as a classification criterion for investment funds).
  43. Zhou, S., Cheng, Y., & Zhou, X. (2018). Research on the “Investment Style Drift” Phenomenon of China's Open-end Equity Funds. Management World, 6, 175–176.
DOI: https://doi.org/10.2478/ceej-2021-0020 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 269 - 284
Published on: Nov 7, 2021
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Katarzyna Perez, Małgorzata Szczyt, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.