Fig. 1

Fig. 2

Fig. 3
![Classification of types of corruption. Source: Chrustowski T, Prawne, kryminologiczne i kryminalistyczne aspekty łapówkarstwa [Legal, criminological and forensic aspects of bribery], Legal Publishing House, Warsaw 1985.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471278a2b88470fbea15c8d/j_ceej-2020-0015_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T062246Z&X-Amz-Expires=3600&X-Amz-Signature=e3385fe6b76e94984e7f7b789b1388a8296490ee934d3739703df5cb25d8ae57&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 4

Fig. A1

Fig. A2

Fig. A3

Regression outcomes for microeconomic variables
| Corruption | Coeff. (Std. Err.) | Z | P>|z| |
|---|---|---|---|
| Years on the market | 0.0089*** (0.0027) | 3.29 | 0.001 |
| Employment | −0.0268 (0.0219) | −1.23 | 0.22 |
| Sta_capital | −1.1087** (0.4776) | −2.32 | 0.02 |
| For_capital | −0.1921 (0.1430) | −1.34 | 0.179 |
| State_prod | 0.0211 (0.1075) | 0.2 | 0.845 |
| Time_officials | 0.3673*** (0.1249) | 2.94 | 0.003 |
| Audits | 0.0089 (0.0047) | 1.88 | 0.06 |
| Efficiency | 0.0216*** (0.0075) | 2.86 | 0.004 |
| Thefts | 3.4493*** (1.1172) | 3.09 | 0.002 |
| small_loc | −0.1215 (0.0819) | −1.48 | 0.138 |
| medium_loc | −0.3331*** (0.0848) | −3.93 | 0 |
| large_loc | −0.3411*** (0.1159) | −2.94 | 0.003 |
| small_company | −0.0388 (0.0968) | −0.4 | 0.689 |
| medium_company | −0.0402 (0.0920) | −0.44 | 0.662 |
| _cons | 0.6286** (0.2513) | 2.5 | 0.012 |
| Country Effect | TAK | ||
| Industry effect | TAK | ||
| Number of observations | 7486 | ||
| F-Statistic | 948.15 | ||
| Pseudo R2 | 0.0940 | ||
| p-value | 0.0000 |
Descriptive statistics for the Business sector variables
| Variable | Number of observations | Std. Dev. | Min. | Max. |
|---|---|---|---|---|
| Other | 16.566 | 0.2715 | 0 | 1 |
| Food products | 16.566 | 0.2587 | 0 | 1 |
| Textiles | 16.566 | 0.1567 | 0 | 1 |
| Clothing | 16.566 | 0.1876 | 0 | 1 |
| Chemicals | 16.566 | 0.1516 | 0 | 1 |
| Plastics and rubber | 16.566 | 0.1428 | 0 | 1 |
| Mineral products | 16.566 | 0.1966 | 0 | 1 |
| Metals and raw materials | 16.566 | 0.0739 | 0 | 1 |
| Metal products | 16.566 | 0.2001 | 0 | 1 |
| Machines and devices | 16.566 | 0.2360 | 0 | 1 |
| Electronics | 16.566 | 0.1165 | 0 | 1 |
| Construction | 16.566 | 0.2810 | 0 | 1 |
| Wholesale | 16.566 | 0.3493 | 0 | 1 |
| Retail | 16.566 | 0.4215 | 0 | 1 |
| Hotels and restaurants | 16.566 | 0.2001 | 0 | 1 |
| IT | 16.566 | 0.1351 | 0 | 1 |
Statistics of microeconomic variables
| Variable | Number of observations | SD | Min. | Max. |
|---|---|---|---|---|
| Corruption | 15.904 | 0.4832 | 0 | 1 |
| Years on the market | 16.566 | 12.0624 | 0 | 178 |
| Employment | 15.039 | 1.3708 | 0 | 9.21034 |
| Sta_capital | 16.566 | 0.0751 | 0 | 0.99 |
| For_capital | 16.566 | 0.1959 | 0 | 1 |
| State_prod | 16.566 | 0.2607 | 0 | 1 |
| Time_officials | 16.566 | 0.2016 | 0 | 1 |
| Audits | 8.496 | 5.3148 | 1 | 150 |
| Efficiency | 15.039 | 3.5798 | 0 | 8.269244 |
| Thefts | 16.566 | 0.0253 | 0 | 1 |
| small_loc | 16.566 | 0.4401 | 0 | 1 |
| medium_loc | 16.566 | 0.4942 | 0 | 1 |
| large_loc | 16.566 | 0.3153 | 0 | 1 |
| small_company | 16.566 | 0.4990 | 0 | 1 |
| medium_company | 16.566 | 0.4772 | 0 | 1 |
| large_company | 16.566 | 0.3213 | 0 | 1 |
Explanatory and explained continuous variables
| Name | Variable |
|---|---|
| Corruption | Corresponds to the percentage of the answer to the question ‘Is corruption an obstacle to business?’ |
| Years on the market | The company’s existence on the market in years |
| Employment | number of employees |
| Sta_capital | State ownership in capital (%) |
| For_capital | Foreign ownership in capital (%) |
| state production | Percentage of production sold domestically |
| Time_officials | Time spent on contacting government officials (% of work time) |
| Audits | Number of state audits |
| Efficiency | The ratio of sales to employees |
| Thefts | Losses caused by theft (% of revenues) |
| Investments | The level of investments in the country as% of GDP |
| GDP per capita | GDP per capita calculated in % |
Comparison of the estimation results of the logit and probit models
| Variable | logit | probit |
|---|---|---|
| Years on the market | 0.00876502 | 0.00530975 |
| Employment | −0.00008314 | −0.00004948 |
| Sta_capital | −1.133988 | −0.62454681 |
| For_capital | −0.197049 | −0.1253618 |
| State_prod | 0.02541215 | 0.01607862 |
| Time_officials | 0.36951254 | 0.22890388 |
| Audits | 0.00907696 | 0.00543676 |
| Efficiency | 0.02150128 | 0.01288578 |
| Thefts | 3.4365243 | 1.8378906 |
| Other | 0.03748113 | 0.02313259 |
| Food products | −0.14439709 | −0.0845678 |
| Textiles | 0.3521586 | 0.21495443 |
| Clothing | 0.11952786 | 0.07476893 |
| Chemicals | 0.52001581 | 0.31532122 |
| Plastics and rubber | −0.03725552 | −0.01415368 |
| Mineral products | 0.32495071 | 0.19949212 |
| Metals and raw materials | −0.0577727 | −0.02944644 |
| Metal products | 0.02482283 | 0.01903884 |
| Machines and devices | 0.13714882 | 0.08354676 |
| Electronics | 0.2596035 | 0.15581276 |
| Construction | 0.3544781 | 0.22319262 |
| Wholesale | 0.20622816 | 0.13128126 |
| Retail | −0.0664786 | −0.03453299 |
| Hotels and restaurants | −0.1737417 | −0.09251344 |
| IT | 0.33941652 | 0.2147104 |
| small_loc | −0.12165995 | −0.07618389 |
| medium_loc | −0.33236935 | −0.2025015 |
| large_loc | −0.33919617 | −0.20681956 |
| small_company | −0.0014848 | 0.00030351 |
| medium_company | −0.02023952 | −0.01255519 |
| medium_company | −0.02023952 | −0.01255519 |
| Bulgaria | –1.1978914 | −0.73944942 |
| Albania | −1.1592144 | −0.71822055 |
| Croatia | −1.1413132 | −0.70407362 |
| Belarus | −2.0420131 | −1.2431616 |
| Georgia | −2.6648174 | −1.5931303 |
| Tajikistan | −1.4865773 | −0.9180442 |
| Turkey | −1.2972634 | −0.80528348 |
| Ukraine | −0.40252307 | −0.24803484 |
| Uzbekistan | −3.5135959 | −2.0308543 |
| Russia | −0.88202438 | −0.54765707 |
| Romania | −0.13433538 | −0.08237083 |
| Kazakhstan | −1.2451245 | −0.76820525 |
| Bosnia_and_Herzegovina_Ha | −1.0461743 | −0.6461674 |
| Azerbaijan | −3.0499892 | −1.792391 |
| Macedonia | −1.8585547 | −1.1448237 |
| Armenia | −1.8512206 | −1.1417558 |
| Kyrgyzstan | 0.35124133 | 0.21087963 |
| Estonia | −3.0235201 | −1.8171122 |
| Czech Republic | −1.1688309 | −0.7194871 |
| Italy | −2.2520163 | −1.3720082 |
| Latvia | −1.9601472 | −1.2002027 |
| Lithuania | −1.7678234 | −1.0833992 |
| Slovakia | −0.99406504 | −0.6160503 |
| Slovenia | −2.1529345 | −1.304369 |
| Serbia | −1.5845897 | −0.97913306 |
| Cyprus | −1.6468074 | −1.0145575 |
| Greece | 0.46229253 | 0.26145001 |
| Moldova | −1.0586318 | −0.65745899 |
| Mongolia | −1.665327 | −1.025903 |
| Montenegro | −2.827147 | −1.6969201 |
| Poland | −1.5308906 | −0.939425 |
| _cons | 0.54153984 | 0.33342044 |
Model estimation for the country effect
| Corruption | Coeff. (Std. Err.) | z | P>|z| |
|---|---|---|---|
| Bulgaria | −1.2071*** (0.2338) | −5.160 | 0 |
| Albania | −1.1592*** (0.2098) | −5.520 | 0 |
| Croatia | −1.1568*** (0.2430) | −4.760 | 0 |
| Belarus | −2.0415*** (0.2905) | −7.030 | 0 |
| Georgia | −2.6626*** (0.3789) | −7.030 | 0 |
| Tajikistan | −1.4810*** (0.2225) | −6.660 | 0 |
| Turkey | −1.2983*** (0.1958) | −6.630 | 0 |
| Ukraine | −0.3955** (0.1922) | −2.060 | 0.04 |
| Uzbekistan | −3.5079*** (0.4045) | −8.670 | 0 |
| Russia | −0.8858*** (0.1792) | −4.940 | 0 |
| Romania | −0.1506 (0.2055) | −0.730 | 0.464 |
| Kazakhstan | −1.2396*** (0.2477) | −5.000 | 0 |
| Bosnia and Herzegovina | −1.0536*** (0.2142) | −4.920 | 0 |
| Azerbaijan | −3.0388*** (0.2907) | −10.450 | 0 |
| Macedonia | −1.8757*** (0.2192) | −8.560 | 0 |
| Armenia | −1.8567*** (0.2236) | −8.300 | 0 |
| Kyrgyzstan | 0.3629 (0.2298) | 1.580 | 0.114 |
| Estonia | −3.0317*** (0.5035) | −6.020 | 0 |
| Czech Republic | −1.1714*** (0.2448) | −4.790 | 0 |
| Italy | −2.2347*** (0.2640) | −8.460 | 0 |
| Latvia | −1.9786*** (0.2901) | −6.820 | 0 |
| Lithuania | −1.7852*** (0.2866) | −6.230 | 0 |
| Slovakia | −1.0013*** (0.2618) | −3.820 | 0 |
| Slovenia | −2.1769*** (0.4199) | −5.180 | 0 |
| Serbia | −1.5975*** (0.2292) | −6.970 | 0 |
| Cyprus | −1.6615*** (0.3262) | −5.090 | 0 |
| Greece | 0.4579 (0.3170) | 1.440 | 0.149 |
| Moldova | −1.0548*** (0.2134) | −4.940 | 0 |
| Mongolia | −1.6670*** (0.2219) | −7.510 | 0 |
| Montenegro | −2.8361*** (0.3518) | −8.060 | 0 |
| Poland | −1.5388*** (0.2477) | −6.210 | 0 |
Model estimation for the industry effect
| Corruption | Coeff. (Std. Err.) | z | P>|z| |
|---|---|---|---|
| Other | 0.0385 (0.1409) | 0.270 | 0.785 |
| Food products | −0.1382 (0.1439) | −0.960 | 0.337 |
| Textiles | 0.3672* (0.1912) | 1.920 | 0.055 |
| Clothing | 0.1311 (0.1701) | 0.770 | 0.441 |
| Chemicals | 0.5306*** (0.1964) | 2.700 | 0.007 |
| Plastics and rubber | −0.0306 (0.2059) | −0.150 | 0.882 |
| Mineral products | 0.3376** (0.1634) | 2.070 | 0.039 |
| Metals and raw materials | −0.0580 (0.3297) | −0.180 | 0.860 |
| Metal products | 0.0288 (0.1669) | 0.170 | 0.863 |
| Machines and devices | 0.1393 (0.1485) | 0.940 | 0.348 |
| Electronics | 0.2530 (0.2361) | 1.070 | 0.284 |
| Construction | 0.3605*** (0.1373) | 2.630 | 0.009 |
| Wholesale | 0.1995 (0.1263) | 1.580 | 0.114 |
| Retail | −0.0695 (0.1201) | −0.580 | 0.563 |
| Hotels and restaurants | −0.1644 (0.1623) | −1.010 | 0.311 |
| IT | 0.3336 (0.2302) | 1.450 | 0.147 |
Regression outcomes only for significant variables
| Corruption | Coeff. (Std. Err.) | z | P>|z| |
|---|---|---|---|
| Years on the market | 0.0062*** (0.0019) | 3.33 | 0.001 |
| Sta_capital | −1.2882*** (0.3850) | −3.35 | 0.001 |
| Time_officials | 0.5488*** (0.0914) | 6.01 | 0.000 |
| Efficiency | 0.0232*** (0.0053) | 4.35 | 0.000 |
| Thefts | 2.8411*** (0.7840) | 3.36 | 0.000 |
| medium_loc | −0.1124** (0.0522) | −2.15 | 0.031 |
| large_loc | 0.5336 (0.0767) | 0.70 | 0.487 |
| _cons | 0.5986*** (0.1652) | 3.62 | 0.000 |
| Country effect | TAK | ||
| Industry effect | TAK | ||
| Number of observations | 14470 | ||
| F-Statistic | 1831.32 | ||
| p-value | 0.0000 | ||
| pseudo R2 | 0.0954 |
Statistics of macroeconomic variables
| Variable | Number of observations | SD | Min. | Max. |
|---|---|---|---|---|
| CPI | 16.566 | 11.6013 | 21 | 70 |
| Investments | 15.457 | 4.7292 | 4.2 | 31.1 |
| GDP per capita | 16.566 | 3174.36 | 796 | 30829.5 |
| OECD | 16.566 | 0.500 | 0 | 1 |
Estimation outcomes for macroeconomic variables
| Corruption | Coeff. (Std. Err.) | z | P>|z| |
|---|---|---|---|
| CPI | −0.6106*** (0.0760) | −8.03 | 0.000 |
| Investments | 1.0797*** (0.1118) | 9.66 | 0.000 |
| GDP per capita | 0.0023*** (0.0003) | 7.75 | 0.000 |
| OECD | −8.3657*** (1.1951) | −7.00 | 0.000 |
| _cons | 13.6031*** (1.7468) | 7.79 | 0.000 |
| Country effect | TAK | ||
| Industry effect | TAK | ||
| Number of observations | 14.830 | ||
| F-Statistic | 1664.09 | ||
| Pseudo R2 | 0.0843 | ||
| p-value | 0.0000 |
Descriptive statistics for the country variables
| Variable | Number of observations | Std. Dev. | Min. | Max. |
|---|---|---|---|---|
| Bulgaria | 16.566 | 0.1318 | 0 | 1 |
| Albania | 16.566 | 0.1458 | 0 | 1 |
| Croatia | 16.566 | 0.1458 | 0 | 1 |
| Belarus | 16.566 | 0.1458 | 0 | 1 |
| Georgia | 16.566 | 0.1458 | 0 | 1 |
| Tajikistan | 16.566 | 0.1456 | 0 | 1 |
| Turkey | 16.566 | 0.2730 | 0 | 1 |
| Ukraine | 16.566 | 0.2384 | 0 | 1 |
| Uzbekistan | 16.566 | 0.1516 | 0 | 1 |
| Russia | 16.566 | 0.4357 | 0 | 1 |
| Romania | 16.566 | 0.1776 | 0 | 1 |
| Kazakhstan | 16.566 | 0.1868 | 0 | 1 |
| Bosnia and Herzegovina | 16.566 | 0.1458 | 0 | 1 |
| Azerbaijan | 16.566 | 0.1516 | 0 | 1 |
| Macedonia | 16.566 | 0.1458 | 0 | 1 |
| Armenia | 16.566 | 0.1458 | 0 | 1 |
| Kyrgyzstan | 16.566 | 0.1266 | 0 | 1 |
| Estonia | 16.566 | 0.1273 | 0 | 1 |
| Czech Republic | 16.566 | 0.1229 | 0 | 1 |
| Italy | 16.566 | 0.1355 | 0 | 1 |
| Latvia | 16.566 | 0.1410 | 0 | 1 |
| Lithuania | 16.566 | 0.1266 | 0 | 1 |
| Slovakia | 16.566 | 0.1262 | 0 | 1 |
| Slovenia | 16.566 | 0.1266 | 0 | 1 |
| Serbia | 16.566 | 0.1458 | 0 | 1 |
| Cyprus | 16.566 | 0.1458 | 0 | 1 |
| Greece | 16.566 | 0.1383 | 0 | 1 |
| Moldova | 16.566 | 0.1458 | 0 | 1 |
| Mongolia | 16.566 | 0.1458 | 0 | 1 |
| Montenegro | 16.566 | 0.0947 | 0 | 1 |
| Poland | 16.566 | 0.1779 | 0 | 1 |
| Kosovo | 16.566 | 0.1098 | 0 | 1 |
