References
- Abad, P., Benito, S., & Lopez, C. (2013). A comprehensive review of value at risk methodologies. The Spanish Review of Financial Economics, 12(1), 15–32.
- Allen, D., Singh, A., & Powell, R. (2011). Value at Risk estimation using extreme value theory. ECU Publications. Retrieved from
http://ro.ecu.edu.au/ecuworks2011/ . - Alves, M., & Santos, P. (2013). Conditional EVT for VAR estimation: comparison with a new independence test. In J. Lita da Silva (Ed.), Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications (pp. 183–191). Berlin, Germany: Springer.
- Angelidis, T., Benos, A., & Degiannakis, S. (2007). A robust VAR model under different time periods and weighting schemes. Review of Quantitative Finance and Accounting, 28, 187–201.
- Artzner, P., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.
- Balkema, A., & de Haan, L. (1974). Residual lifetime at great age. Annals of Probability, 2, 792–804.
- Bao, Y., Lee, T.-H., & Saltoglu, B. (2006). Evaluating predictive performance of Value-at-Risk models in emerging markets: a reality check. Journal of Forecasting, 25, 101–128.
- BCBS. (1996). Supervisory framework for the use of ‘backtesting’ in conjuction with the internal models approach to market risk capital requirements. Basel: Basel Committee on Banking Supervision. Retrieved from
https://www.bis.org/publ/bcbs22.htm . - Bee, M., & Miorelli, F. (2010). Dynamic VaR models and the peaks over threshold method for market risk measurement: an empirical investigation during a financial crisis. Department of Economics Working Papers 1009, Department of Economics, University of Trento, Italia.
- Bhattacharyya, M., & Ritolia, G. (2008). Conditional VaR using EVT – towards a planned margin scheme. International Review of Financial Analysis, 17, 382–395.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
- Bollerslev, T., Todorov, V., & Li, S. (2013). Jump tails, extreme dependencies, and the distribution of stock returns. Journal of Econometrics, 172(2), 307–324.
- Bommier, E. (2014). Peaks-over-threshold modelling of environmental data. Retrieved from
https://uu.diva-portal.org/smash/get/diva2:760802/FULLTEXT01.pdf . - Bystrom, H. (2001). Managing risks in tranquil and volatile markets using conditional extreme value theory. International Review of Financial Analysis, 13(2), 133–152.
- Caires, S. (2009). A comparative simulation study of the annual Maxima and the peaks-over-threshold methods. “Hydraulic Engineering Reports” (Deltares Report 1200264-002). Retrieved from
https://repository.tudelft.nl/islandora/object/uuid:143b0f1e-f61e-44ab-8da3-9241970d915b?collection=research . - Caporin, M. (2008). Evaluating Value-at-Risk measures in the presence of long memory conditional volatility. Journal of Risk, 10, 79–110.
- Chlebus, M. (2014). Market risk measuring using value at risk – two-step approach (PhD thesis), Faculty of Economic Sciences, University of Warsaw.
- Christoffersen, P. (1998). Evaluating interval forecasting. International Economic Review, 39, 841–862.
- Darbha, G. (2001). Value-at-Risk for fixed income portfolios – a comparison of alter-native models. Mumbai: National Stock Exchange. Retrieved from
https://www.researchgate.net/publication/228607410_Value-at-Risk_for_Fixed_Income_portfolios-A_comparison_of_alternative_models . - Da Silva, A., & de Melo Mendes, B. V. (2003). Value-at-Risk and extreme returns in Asian stock markets. International Journal of Business, 8(1), 24.
- Embrechts, P., Kluppelberg, C., & Mikosch, T. (1997). Modelling extremal events for Insurance and Finance. Springer-Verlag, 295–305.
- Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987–1007.
- Engle, R., & Patton, A. (2001). What good is a volatility model? Quantitative Finance, Vol. 1, 237–245.
- Engle, R. F., & Manganelli, S. (2004). CAViaR: conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367–381.
- Ergun, T., & Jun, J. (2010). Time-varying higher-order conditional moments and forecasting intraday VaR and expected shortfall. The Quarterly Review of Economics and Finance, 50, 264–272.
- Fisher, R., & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 180–190.
- Flugentiusson, H. (2012). Push it to the limit. Testing the usefulness of extreme value theory in electricity markets. Lund University Publications. Retrieved from
http://lup.lub.lu.se/luur/download?-func=downloadFile&recordOId=3166413&file-OId=3166414 . - Gencay, R., & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20, 287–303.
- Gencay, R., Selcuk, F., & Ulugulyagci, A. (2003). High volatility, thick tails and extreme value theory in Value-at-Risk estimation. Insurance: Mathematics and Economics, 33, 337–356.
- Kourouma, L., Dupre, D., Sanfilippo, G., & Taramasco, O. (2010). Extreme value at risk and expected shortfall during financial crisis. Retrieved from
https://ssrn.com/abstract=1744091 ;doi:10.2139/ssrn.1744091. - Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3(2), 73–84.
- Lopez, J. (1999). Methods for evaluating Value-at-Risk estimates. Federal Reserve Bank of San Francisco Economic Review, 2, 3–17.
- Manganelli, S., & Engle, R. (2001). Value at Risk Models in Finance. ECB Working Paper No. 75, available at SSRN:
https://ssrn.com/abstract=356220 - Marimoutou, V., Raggad, B., & Trabelsi, A. (2009). Extreme value theory and value at risk: application to oil market. Energy Economics, 31, 519–530.
- Marinelli C., d’Addona S., & Rachev T. (2007). A comparison of some univariate models for Value-at-Risk and expected shortfall. International Journal of Theoretical and Applied Finance, 10(06), 1043–1075.
- Mutu, S., Balogh, P., & Moldovan, D. (2011). The efficiency of value at risk models on central and eastern European stock markets. International Journal of Mathematics and Computers in Simulation, 5, 110–117.
- Nozari, M., Raei, S., Jahanguin, P., & Bahramgiri, M. (2010). A comparison of heavy-tailed estimates and filtered historical simulation: evidence from emerging markets. International Review of Business Papers, 6(4), 347–359.
- Pagan, A. (1996). The econometrics of financial markets. Journal of Empirical Finance, 3, 15–102.
- Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
