Have a personal or library account? Click to login
Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions Cover

Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions

By: Filip Szubzda and  Marcin Chlebus  
Open Access
|Mar 2020

References

  1. Abad, P., Benito, S., & Lopez, C. (2013). A comprehensive review of value at risk methodologies. The Spanish Review of Financial Economics, 12(1), 15–32.
  2. Allen, D., Singh, A., & Powell, R. (2011). Value at Risk estimation using extreme value theory. ECU Publications. Retrieved from http://ro.ecu.edu.au/ecuworks2011/.
  3. Alves, M., & Santos, P. (2013). Conditional EVT for VAR estimation: comparison with a new independence test. In J. Lita da Silva (Ed.), Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications (pp. 183–191). Berlin, Germany: Springer.
  4. Angelidis, T., Benos, A., & Degiannakis, S. (2007). A robust VAR model under different time periods and weighting schemes. Review of Quantitative Finance and Accounting, 28, 187–201.
  5. Artzner, P., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.
  6. Balkema, A., & de Haan, L. (1974). Residual lifetime at great age. Annals of Probability, 2, 792–804.
  7. Bao, Y., Lee, T.-H., & Saltoglu, B. (2006). Evaluating predictive performance of Value-at-Risk models in emerging markets: a reality check. Journal of Forecasting, 25, 101–128.
  8. BCBS. (1996). Supervisory framework for the use of ‘backtesting’ in conjuction with the internal models approach to market risk capital requirements. Basel: Basel Committee on Banking Supervision. Retrieved from https://www.bis.org/publ/bcbs22.htm.
  9. Bee, M., & Miorelli, F. (2010). Dynamic VaR models and the peaks over threshold method for market risk measurement: an empirical investigation during a financial crisis. Department of Economics Working Papers 1009, Department of Economics, University of Trento, Italia.
  10. Bhattacharyya, M., & Ritolia, G. (2008). Conditional VaR using EVT – towards a planned margin scheme. International Review of Financial Analysis, 17, 382–395.
  11. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
  12. Bollerslev, T., Todorov, V., & Li, S. (2013). Jump tails, extreme dependencies, and the distribution of stock returns. Journal of Econometrics, 172(2), 307–324.
  13. Bommier, E. (2014). Peaks-over-threshold modelling of environmental data. Retrieved from https://uu.diva-portal.org/smash/get/diva2:760802/FULLTEXT01.pdf.
  14. Bystrom, H. (2001). Managing risks in tranquil and volatile markets using conditional extreme value theory. International Review of Financial Analysis, 13(2), 133–152.
  15. Caires, S. (2009). A comparative simulation study of the annual Maxima and the peaks-over-threshold methods. “Hydraulic Engineering Reports” (Deltares Report 1200264-002). Retrieved from https://repository.tudelft.nl/islandora/object/uuid:143b0f1e-f61e-44ab-8da3-9241970d915b?collection=research.
  16. Caporin, M. (2008). Evaluating Value-at-Risk measures in the presence of long memory conditional volatility. Journal of Risk, 10, 79–110.
  17. Chlebus, M. (2014). Market risk measuring using value at risk – two-step approach (PhD thesis), Faculty of Economic Sciences, University of Warsaw.
  18. Christoffersen, P. (1998). Evaluating interval forecasting. International Economic Review, 39, 841–862.
  19. Darbha, G. (2001). Value-at-Risk for fixed income portfolios – a comparison of alter-native models. Mumbai: National Stock Exchange. Retrieved from https://www.researchgate.net/publication/228607410_Value-at-Risk_for_Fixed_Income_portfolios-A_comparison_of_alternative_models.
  20. Da Silva, A., & de Melo Mendes, B. V. (2003). Value-at-Risk and extreme returns in Asian stock markets. International Journal of Business, 8(1), 24.
  21. Embrechts, P., Kluppelberg, C., & Mikosch, T. (1997). Modelling extremal events for Insurance and Finance. Springer-Verlag, 295–305.
  22. Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987–1007.
  23. Engle, R., & Patton, A. (2001). What good is a volatility model? Quantitative Finance, Vol. 1, 237–245.
  24. Engle, R. F., & Manganelli, S. (2004). CAViaR: conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367–381.
  25. Ergun, T., & Jun, J. (2010). Time-varying higher-order conditional moments and forecasting intraday VaR and expected shortfall. The Quarterly Review of Economics and Finance, 50, 264–272.
  26. Fisher, R., & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 180–190.
  27. Flugentiusson, H. (2012). Push it to the limit. Testing the usefulness of extreme value theory in electricity markets. Lund University Publications. Retrieved from http://lup.lub.lu.se/luur/download?-func=downloadFile&recordOId=3166413&file-OId=3166414.
  28. Gencay, R., & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20, 287–303.
  29. Gencay, R., Selcuk, F., & Ulugulyagci, A. (2003). High volatility, thick tails and extreme value theory in Value-at-Risk estimation. Insurance: Mathematics and Economics, 33, 337–356.
  30. Kourouma, L., Dupre, D., Sanfilippo, G., & Taramasco, O. (2010). Extreme value at risk and expected shortfall during financial crisis. Retrieved from https://ssrn.com/abstract=1744091;doi:10.2139/ssrn.1744091.
  31. Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3(2), 73–84.
  32. Lopez, J. (1999). Methods for evaluating Value-at-Risk estimates. Federal Reserve Bank of San Francisco Economic Review, 2, 3–17.
  33. Manganelli, S., & Engle, R. (2001). Value at Risk Models in Finance. ECB Working Paper No. 75, available at SSRN: https://ssrn.com/abstract=356220
  34. Marimoutou, V., Raggad, B., & Trabelsi, A. (2009). Extreme value theory and value at risk: application to oil market. Energy Economics, 31, 519–530.
  35. Marinelli C., d’Addona S., & Rachev T. (2007). A comparison of some univariate models for Value-at-Risk and expected shortfall. International Journal of Theoretical and Applied Finance, 10(06), 1043–1075.
  36. Mutu, S., Balogh, P., & Moldovan, D. (2011). The efficiency of value at risk models on central and eastern European stock markets. International Journal of Mathematics and Computers in Simulation, 5, 110–117.
  37. Nozari, M., Raei, S., Jahanguin, P., & Bahramgiri, M. (2010). A comparison of heavy-tailed estimates and filtered historical simulation: evidence from emerging markets. International Review of Business Papers, 6(4), 347–359.
  38. Pagan, A. (1996). The econometrics of financial markets. Journal of Empirical Finance, 3, 15–102.
  39. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
DOI: https://doi.org/10.2478/ceej-2019-0005 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 70 - 85
Published on: Mar 13, 2020
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Filip Szubzda, Marcin Chlebus, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.