References
- Abd Al Karem, S. T., & Al-Asadi, A. K. (2024). IMPACT OF VARIOUS TYPES OF FIBRES ON THE MECHANICAL PROPERTIES OF LIGHTWEIGHT CONCRETE. Civil and Environmental Engineering, 20(2), 1255–1266. https://doi.org/10.2478/cee-2024-0091.
- Almutairi, A. L., Ahmed, S. N., & Domat, W. B. (2025). Numerical Analysis of Reinforced Concrete Members with Basalt Fibre Reinforced Polymer (BFRP) Bars. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0070.
- Amer, A. A. R., Abdullah, M. M. A. B., Liew, Y. M., Aziz, I. H. A., Wysłocki, J. J., Tahir, M. F. M., Sochacki, W., Garus, S., Gondro, J., & Amer, H. A. R. (2021). Optimizing of the cementitious composite matrix by addition of steel wool fibers (chopped) based on physical and mechanical analysis. Materials, 14(5), 1–14. https://doi.org/10.3390/ma14051094.
- Bdair, N. S. H., & Alwash, N. A. H. (2025). Flexural Strengthening of Reinforced Concrete Beams by Different FRP Products Using Near-Surface Mounted Technique. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0087
- Caggiano, A., Cremona, M., Faella, C., Lima, C., & Martinelli, E. (2012). Fracture behavior of concrete beams reinforced with mixed long/short steel fibers. Construction and Building Materials, 37, 832–840. https://doi.org/10.1016/j.conbuildmat.2012.07.060.
- Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M., & Marasli, M. (2022). Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers. Construction and Building Materials, 328. https://doi.org/10.1016/j.conbuildmat.2022.127079.
- Deng, Y., Zhang, Z., Shi, C., Wu, Z., & Zhang, C. (2023a). Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. In Engineering (Vol. 22, pp. 215–232). Elsevier Ltd. https://doi.org/10.1016/j.eng.2021.11.019.
- Deng, Y., Zhang, Z., Shi, C., Wu, Z., & Zhang, C. (2023b). Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. In Engineering (Vol. 22, pp. 215–232). Elsevier Ltd. https://doi.org/10.1016/j.eng.2021.11.019.
- Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C., & Uruchurtu-Chavarín, J. (2025a). Mechanical Behavior of Concrete Reinforced with Natural Palm and Mango Fibers. Journal of Engineering and Technological Sciences, 57(1), 48–65. https://doi.org/10.5614/j.eng.technol.sci.2025.57.1.4.
- Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C., & Uruchurtu-Chavarín, J. (2025b). STUDY ON CORROSION OF REINFORCED CONCRETE WITH SYNTHETIC FIBER USING ELECTROCHEMICAL NOISE TECHNIQUE. Civil and Environmental Engineering, 28(1), 271–281. https://doi.org/10.2478/cee-2025-0021.
- Hemeda, E. S., Bashandy, A. A., & Nasser, A. A. (2024). IMPROVING MECHANICAL PROPERTIES OF RECYCLED AGGREGATE PERVIOUS CONCRETE USING TAGUCHI METHOD. Civil and Environmental Engineering, 20(2), 1186–1202. https://doi.org/10.2478/cee-2024-0087.
- Hoang, D. P., Pham, D. T., Cao, M. Q., & Tran, M. T. (2025). EFFECT OF SHORT POLYPROPYLENE FIBRE CONTENT ON THE MECHANICAL PROPERTIES OF TEXTILE-REINFORCED ENGINEERED CONCRETE COMPOSITE. Civil and Environmental Engineering, 28(1), 521–534. https://doi.org/10.2478/cee-2025-0039.
- Iqbal, S., Ali, I., Room, S., Khan, S. A., & Ali, A. (2019a). Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Materials and Structures/Materiaux et Constructions, 52(3). https://doi.org/10.1617/s11527-019-1357-6.
- Iqbal, S., Ali, I., Room, S., Khan, S. A., & Ali, A. (2019b). Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Materials and Structures/Materiaux et Constructions, 52(3). https://doi.org/10.1617/s11527-019-1357-6.
- Irmawan, M., Piscesa, B., Alrasyid, H., & Suprobo, P. (2022). Numerical Modeling of Steel Fiber Reinforced Concrete Beam with Notched under Three-point Bending Test. Civil Engineering and Architecture, 10(7), 3227–3242. https://doi.org/10.13189/cea.2022.100733.
- Jin, A. H., Woo, J. S., Yun, H. Do, Kim, S. W., Park, W. S., & Choi, W. C. (2025). Influence of concrete strength and fiber properties on residual flexural strength of steel fiber-reinforced concrete. Construction and Building Materials, 489. https://doi.org/10.1016/j.conbuildmat.2025.142366.
- Kaklauskas, G., Sokolov, A., & Barros, J. A. O. de. (2024). A design methodology for fibre reinforced concrete elements in serviceability conditions integrating tension softening and stiffening effects. Engineering Structures, 311. https://doi.org/10.1016/j.engstruct.2024.118199.
- Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. In Cement and Concrete Research (Vol. 120, pp. 294–321). Elsevier Ltd. https://doi.org/10.1016/j.cemconres.2019.03.013.
- Kim, M. J., Yoo, D. Y., Kim, S., Shin, M., & Banthia, N. (2018). Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Research, 107, 30–40. https://doi.org/10.1016/j.cemconres.2018.02.003.
- Lee, S. J., Yoo, D. Y., & Moon, D. Y. (2019). Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061241.
- Marcalikova, Z., & Cajka, R. (2020). Determination of Mechanical Properties of Fiber Reinforced Concrete for Numerical Modelling. Civil and Environmental Engineering, 16(1), 86–106. https://doi.org/10.2478/cee-2020-0010.
- Meda, A., Minelli, F., & Plizzari, G. A. (2012a). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 43(8), 2930–2937. https://doi.org/10.1016/j.compositesb.2012.06.003.
- Meda, A., Minelli, F., & Plizzari, G. A. (2012b). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 43(8), 2930–2937. https://doi.org/10.1016/j.compositesb.2012.06.003.
- Mi, Z., Hu, Y., Li, Q., Wang, Y., Zhang, H., & Zhang, Z. (2023). An inverse analysis method for determining tensile softening relationship of concrete considering local response. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132195.
- Mishra, A., Chandraul, K., & Kumar Singh, M. (2017). EXPERIMENTAL STUDY ON STEEL FIBER REINFORCED CONCRETE. International Research Journal of Engineering and Technology. www.irjet.net.
- Njyman, A. J., & Hilal, A. A. (2025). OPTIMIZING STRENGTH AND IMPACT OF HYBRID FIBER REINFORCED MODIFIED FOAMED CONCRETE BY RESPONSE SURFACE METHOD (RSM). Civil and Environmental Engineering, 28(1), 462–474. https://doi.org/10.2478/cee-2025-0035.
- Paegle, I., Minelli, F., & Fischer, G. (2016). Cracking and load-deformation behavior of fiber reinforced concrete: Influence of testing method. Cement and Concrete Composites, 73, 147–163. https://doi.org/10.1016/j.cemconcomp.2016.06.012.
- Piscesa, B., Alrasyid, H., Prasetya, D., & Iranata, D. (2021). Numerical Investigation of Reinforced Concrete Beam Due to Shear Failure. IPTEK The Journal for Technology and Science, 31(3), 373. https://doi.org/10.12962/j20882033.v31i3.7385.
- Piscesa, B., Attard, M. M., Prasetya, D., & Samani, A. K. (2019). Modeling cover spalling behavior in high strength reinforced concrete columns using a plasticity-fracture model. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109336.
- Piscesa, B., Attard, M. M., & Samani, A. K. (2018). 3D Finite element modeling of circular reinforced concrete columns confined with FRP using a plasticity based formulation. Composite Structures, 194, 478–493. https://doi.org/10.1016/j.compstruct.2018.04.039.
- Piscesa, B., Attard, M. M., Samani, A. K., & Tangaramvong, S. (2017). Plasticity constitutive model for stress-strain relationship of confined concrete. ACI Materials Journal, 114(2), 361–371. https://doi.org/10.14359/51689428.
- Puspitasari, N. D., Piscesa, B., Attard, M. M., Prasetya, D., Faimun, F., Aji, P., & Suprobo, P. (n.d.). Parameter Identification for Modeling Steel Fiber Reinforced Concrete under Compression to Prevent Concrete Cover Spalling under Severe Earthquake Loading Condition. https://doi.org/10.1051/e3sconf/20201560.
- Rashidi, M., Kargar, S., & Roshani, S. (2024). Experimental and numerical investigation of steel fiber concrete fracture energy. Structures, 59. https://doi.org/10.1016/j.istruc.2023.105792.
- Rismayanti, I., Piscesa, B., Komara, I., & Irmawan, M. (2025). Crack Mouth Opening Displacement (CMOD) Measurement Techniques for Fiber Reinforced Concrete: A Comprehensive Review. In E. M. Nia, M. Awang, M. F. N. Aulady, M. Traykova, & L. Yola (Eds.), Selected Articles from the 8th International Conference on Architecture and Civil Engineering (pp. 962–973). Springer Nature Singapore.
- Salman, A., Hassan, A., & Ahmed, H. I. (2024). Effects of steel fibers and carbon nanotubes on the flexural behavior of hybrid GFRP/steel reinforced concrete beams. Beni-Suef University Journal of Basic and Applied Sciences, 13(1). https://doi.org/10.1186/s43088-024-00584-9.
- Samani, A. K., & Attard, M. M. (2012). A stress-strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335–349. https://doi.org/10.1016/j.engstruct.2012.03.027.
- Tariq, K. A., Ahmad, J., Husnain, S. A., & Ijaz, M. S. (2023). Influence on compressive and tensile strength properties of fiber-reinforced concrete using polypropylene, jute, and coir fiber. Journal of the Mechanical Behavior of Materials, 32(1). https://doi.org/10.1515/jmbm-2022-0263.
- Velayutham, G., & Cheah, C. B. (n.d.). The Effects of Steel Fibre on the Mechanical Strength and Durability of Steel Fibre Reinforced High Strength Concrete (SFRHSC) Subjected to Normal and Hygrothermal Curing. https://doi.org/10.1051/C.
- Wang, X., Xu, B., Mu, R., Qing, L., Liu, Y., Chen, X., Chen, J., & Lei, Z. (2023). Flexural properties of a 2D-distributed steel fiber reinforced cement-based composite two-way slab. Journal of Building Engineering, 73. https://doi.org/10.1016/j.jobe.2023.106792.
- Yoo, D. Y., & Yoon, Y. S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409–423. https://doi.org/10.1016/j.engstruct.2015.08.029.
- Zhang, J., & Stang, H. (1998). APPLICATIONS OF STRESS CRACK WIDTH RELATIONSHIP IN PREDICTING THE FLEXURAL BEHAVIOR OF FIBRE-REINFORCED CONCRETE.
- Zhang, P., Wang, C., Gao, Z., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. In Journal of Building Engineering (Vol. 67). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2023.105975.
- Zhang, Y., Ju, J. W., Chen, Q., Yan, Z., Zhu, H., & Jiang, Z. (2020). Characterizing and analyzing the residual interfacial behavior of steel fibers embedded into cement-based matrices after exposure to high temperatures. Composites Part B: Engineering, 191. https://doi.org/10.1016/j.compositesb.2020.107933.
- Zhao, Y., Wu, B., Peng, S., Yu, Z., & Du, X. (2023). Research and mechanism analysis on dynamic compressive behavior of steel fiber reinforced concrete. Construction and Building Materials, 368. https://doi.org/10.1016/j.conbuildmat.2023.130358.
