Have a personal or library account? Click to login
Experimental and Numerical Investigation of Flexural Behaviour in Steel Fiber-Reinforced Concrete Notched Beam Cover

Experimental and Numerical Investigation of Flexural Behaviour in Steel Fiber-Reinforced Concrete Notched Beam

Open Access
|Feb 2026

References

  1. Abd Al Karem, S. T., & Al-Asadi, A. K. (2024). IMPACT OF VARIOUS TYPES OF FIBRES ON THE MECHANICAL PROPERTIES OF LIGHTWEIGHT CONCRETE. Civil and Environmental Engineering, 20(2), 1255–1266. https://doi.org/10.2478/cee-2024-0091.
  2. Almutairi, A. L., Ahmed, S. N., & Domat, W. B. (2025). Numerical Analysis of Reinforced Concrete Members with Basalt Fibre Reinforced Polymer (BFRP) Bars. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0070.
  3. Amer, A. A. R., Abdullah, M. M. A. B., Liew, Y. M., Aziz, I. H. A., Wysłocki, J. J., Tahir, M. F. M., Sochacki, W., Garus, S., Gondro, J., & Amer, H. A. R. (2021). Optimizing of the cementitious composite matrix by addition of steel wool fibers (chopped) based on physical and mechanical analysis. Materials, 14(5), 1–14. https://doi.org/10.3390/ma14051094.
  4. Bdair, N. S. H., & Alwash, N. A. H. (2025). Flexural Strengthening of Reinforced Concrete Beams by Different FRP Products Using Near-Surface Mounted Technique. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0087
  5. Caggiano, A., Cremona, M., Faella, C., Lima, C., & Martinelli, E. (2012). Fracture behavior of concrete beams reinforced with mixed long/short steel fibers. Construction and Building Materials, 37, 832–840. https://doi.org/10.1016/j.conbuildmat.2012.07.060.
  6. Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M., & Marasli, M. (2022). Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers. Construction and Building Materials, 328. https://doi.org/10.1016/j.conbuildmat.2022.127079.
  7. Deng, Y., Zhang, Z., Shi, C., Wu, Z., & Zhang, C. (2023a). Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. In Engineering (Vol. 22, pp. 215–232). Elsevier Ltd. https://doi.org/10.1016/j.eng.2021.11.019.
  8. Deng, Y., Zhang, Z., Shi, C., Wu, Z., & Zhang, C. (2023b). Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. In Engineering (Vol. 22, pp. 215–232). Elsevier Ltd. https://doi.org/10.1016/j.eng.2021.11.019.
  9. Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C., & Uruchurtu-Chavarín, J. (2025a). Mechanical Behavior of Concrete Reinforced with Natural Palm and Mango Fibers. Journal of Engineering and Technological Sciences, 57(1), 48–65. https://doi.org/10.5614/j.eng.technol.sci.2025.57.1.4.
  10. Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C., & Uruchurtu-Chavarín, J. (2025b). STUDY ON CORROSION OF REINFORCED CONCRETE WITH SYNTHETIC FIBER USING ELECTROCHEMICAL NOISE TECHNIQUE. Civil and Environmental Engineering, 28(1), 271–281. https://doi.org/10.2478/cee-2025-0021.
  11. Hemeda, E. S., Bashandy, A. A., & Nasser, A. A. (2024). IMPROVING MECHANICAL PROPERTIES OF RECYCLED AGGREGATE PERVIOUS CONCRETE USING TAGUCHI METHOD. Civil and Environmental Engineering, 20(2), 1186–1202. https://doi.org/10.2478/cee-2024-0087.
  12. Hoang, D. P., Pham, D. T., Cao, M. Q., & Tran, M. T. (2025). EFFECT OF SHORT POLYPROPYLENE FIBRE CONTENT ON THE MECHANICAL PROPERTIES OF TEXTILE-REINFORCED ENGINEERED CONCRETE COMPOSITE. Civil and Environmental Engineering, 28(1), 521–534. https://doi.org/10.2478/cee-2025-0039.
  13. Iqbal, S., Ali, I., Room, S., Khan, S. A., & Ali, A. (2019a). Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Materials and Structures/Materiaux et Constructions, 52(3). https://doi.org/10.1617/s11527-019-1357-6.
  14. Iqbal, S., Ali, I., Room, S., Khan, S. A., & Ali, A. (2019b). Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Materials and Structures/Materiaux et Constructions, 52(3). https://doi.org/10.1617/s11527-019-1357-6.
  15. Irmawan, M., Piscesa, B., Alrasyid, H., & Suprobo, P. (2022). Numerical Modeling of Steel Fiber Reinforced Concrete Beam with Notched under Three-point Bending Test. Civil Engineering and Architecture, 10(7), 3227–3242. https://doi.org/10.13189/cea.2022.100733.
  16. Jin, A. H., Woo, J. S., Yun, H. Do, Kim, S. W., Park, W. S., & Choi, W. C. (2025). Influence of concrete strength and fiber properties on residual flexural strength of steel fiber-reinforced concrete. Construction and Building Materials, 489. https://doi.org/10.1016/j.conbuildmat.2025.142366.
  17. Kaklauskas, G., Sokolov, A., & Barros, J. A. O. de. (2024). A design methodology for fibre reinforced concrete elements in serviceability conditions integrating tension softening and stiffening effects. Engineering Structures, 311. https://doi.org/10.1016/j.engstruct.2024.118199.
  18. Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. In Cement and Concrete Research (Vol. 120, pp. 294–321). Elsevier Ltd. https://doi.org/10.1016/j.cemconres.2019.03.013.
  19. Kim, M. J., Yoo, D. Y., Kim, S., Shin, M., & Banthia, N. (2018). Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Research, 107, 30–40. https://doi.org/10.1016/j.cemconres.2018.02.003.
  20. Lee, S. J., Yoo, D. Y., & Moon, D. Y. (2019). Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061241.
  21. Marcalikova, Z., & Cajka, R. (2020). Determination of Mechanical Properties of Fiber Reinforced Concrete for Numerical Modelling. Civil and Environmental Engineering, 16(1), 86–106. https://doi.org/10.2478/cee-2020-0010.
  22. Meda, A., Minelli, F., & Plizzari, G. A. (2012a). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 43(8), 2930–2937. https://doi.org/10.1016/j.compositesb.2012.06.003.
  23. Meda, A., Minelli, F., & Plizzari, G. A. (2012b). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 43(8), 2930–2937. https://doi.org/10.1016/j.compositesb.2012.06.003.
  24. Mi, Z., Hu, Y., Li, Q., Wang, Y., Zhang, H., & Zhang, Z. (2023). An inverse analysis method for determining tensile softening relationship of concrete considering local response. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132195.
  25. Mishra, A., Chandraul, K., & Kumar Singh, M. (2017). EXPERIMENTAL STUDY ON STEEL FIBER REINFORCED CONCRETE. International Research Journal of Engineering and Technology. www.irjet.net.
  26. Njyman, A. J., & Hilal, A. A. (2025). OPTIMIZING STRENGTH AND IMPACT OF HYBRID FIBER REINFORCED MODIFIED FOAMED CONCRETE BY RESPONSE SURFACE METHOD (RSM). Civil and Environmental Engineering, 28(1), 462–474. https://doi.org/10.2478/cee-2025-0035.
  27. Paegle, I., Minelli, F., & Fischer, G. (2016). Cracking and load-deformation behavior of fiber reinforced concrete: Influence of testing method. Cement and Concrete Composites, 73, 147–163. https://doi.org/10.1016/j.cemconcomp.2016.06.012.
  28. Piscesa, B., Alrasyid, H., Prasetya, D., & Iranata, D. (2021). Numerical Investigation of Reinforced Concrete Beam Due to Shear Failure. IPTEK The Journal for Technology and Science, 31(3), 373. https://doi.org/10.12962/j20882033.v31i3.7385.
  29. Piscesa, B., Attard, M. M., Prasetya, D., & Samani, A. K. (2019). Modeling cover spalling behavior in high strength reinforced concrete columns using a plasticity-fracture model. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109336.
  30. Piscesa, B., Attard, M. M., & Samani, A. K. (2018). 3D Finite element modeling of circular reinforced concrete columns confined with FRP using a plasticity based formulation. Composite Structures, 194, 478–493. https://doi.org/10.1016/j.compstruct.2018.04.039.
  31. Piscesa, B., Attard, M. M., Samani, A. K., & Tangaramvong, S. (2017). Plasticity constitutive model for stress-strain relationship of confined concrete. ACI Materials Journal, 114(2), 361–371. https://doi.org/10.14359/51689428.
  32. Puspitasari, N. D., Piscesa, B., Attard, M. M., Prasetya, D., Faimun, F., Aji, P., & Suprobo, P. (n.d.). Parameter Identification for Modeling Steel Fiber Reinforced Concrete under Compression to Prevent Concrete Cover Spalling under Severe Earthquake Loading Condition. https://doi.org/10.1051/e3sconf/20201560.
  33. Rashidi, M., Kargar, S., & Roshani, S. (2024). Experimental and numerical investigation of steel fiber concrete fracture energy. Structures, 59. https://doi.org/10.1016/j.istruc.2023.105792.
  34. Rismayanti, I., Piscesa, B., Komara, I., & Irmawan, M. (2025). Crack Mouth Opening Displacement (CMOD) Measurement Techniques for Fiber Reinforced Concrete: A Comprehensive Review. In E. M. Nia, M. Awang, M. F. N. Aulady, M. Traykova, & L. Yola (Eds.), Selected Articles from the 8th International Conference on Architecture and Civil Engineering (pp. 962–973). Springer Nature Singapore.
  35. Salman, A., Hassan, A., & Ahmed, H. I. (2024). Effects of steel fibers and carbon nanotubes on the flexural behavior of hybrid GFRP/steel reinforced concrete beams. Beni-Suef University Journal of Basic and Applied Sciences, 13(1). https://doi.org/10.1186/s43088-024-00584-9.
  36. Samani, A. K., & Attard, M. M. (2012). A stress-strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335–349. https://doi.org/10.1016/j.engstruct.2012.03.027.
  37. Tariq, K. A., Ahmad, J., Husnain, S. A., & Ijaz, M. S. (2023). Influence on compressive and tensile strength properties of fiber-reinforced concrete using polypropylene, jute, and coir fiber. Journal of the Mechanical Behavior of Materials, 32(1). https://doi.org/10.1515/jmbm-2022-0263.
  38. Velayutham, G., & Cheah, C. B. (n.d.). The Effects of Steel Fibre on the Mechanical Strength and Durability of Steel Fibre Reinforced High Strength Concrete (SFRHSC) Subjected to Normal and Hygrothermal Curing. https://doi.org/10.1051/C.
  39. Wang, X., Xu, B., Mu, R., Qing, L., Liu, Y., Chen, X., Chen, J., & Lei, Z. (2023). Flexural properties of a 2D-distributed steel fiber reinforced cement-based composite two-way slab. Journal of Building Engineering, 73. https://doi.org/10.1016/j.jobe.2023.106792.
  40. Yoo, D. Y., & Yoon, Y. S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409–423. https://doi.org/10.1016/j.engstruct.2015.08.029.
  41. Zhang, J., & Stang, H. (1998). APPLICATIONS OF STRESS CRACK WIDTH RELATIONSHIP IN PREDICTING THE FLEXURAL BEHAVIOR OF FIBRE-REINFORCED CONCRETE.
  42. Zhang, P., Wang, C., Gao, Z., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. In Journal of Building Engineering (Vol. 67). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2023.105975.
  43. Zhang, Y., Ju, J. W., Chen, Q., Yan, Z., Zhu, H., & Jiang, Z. (2020). Characterizing and analyzing the residual interfacial behavior of steel fibers embedded into cement-based matrices after exposure to high temperatures. Composites Part B: Engineering, 191. https://doi.org/10.1016/j.compositesb.2020.107933.
  44. Zhao, Y., Wu, B., Peng, S., Yu, Z., & Du, X. (2023). Research and mechanism analysis on dynamic compressive behavior of steel fiber reinforced concrete. Construction and Building Materials, 368. https://doi.org/10.1016/j.conbuildmat.2023.130358.
DOI: https://doi.org/10.2478/cee-2026-0082 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Nov 21, 2025
|
Accepted on: Dec 17, 2025
|
Published on: Feb 8, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Danny Triputra Setiamanah, Priyo Suprobo, Bambang Piscesa, Sinta Nabilah Salma, Akbar Kalam Ramzy, Pannadipa Putera Sukmajaya, Wimpie Agoeng Noegroho Aspar, Dwi Agus Purnomo, Winda Agustin, Shofwan Lathif, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT