References
- Strieška, M., Koteš, P., & Sedmák, A. (2018). Decreasing bridge member’s resistance due to reinforcement corrosion. Procedia Structural Integrity, 13, 1745–1750. https://doi.org/10.1016/j.prostr.2018.12.305.
- Angst, U. M., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete—A review. Cement and Concrete Research, 39(12), 1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006.
- Bertolini, L., Elsener, B., Pedeferri, P., & Polder, R. (2013). Corrosion of steel in concrete: Prevention, diagnosis, repair. Wiley-VCH. https://doi.org/10.1002/9783527651696.
- Kozak, J., Ivašková, M., & Koteš, P. (2014). Atmosphere aggressivity state mapping in Slovak Republic for corrosion of construction materials. Materials Science Forum, 811, 49–56. https://doi.org/10.4028/www.scientific.net/MSF.811.49
- Tidblad, J., Kučera, V., Mikhailov, A. A., Henriksen, J., Kreislová, K., Yates, T., Stöckle, B., & Schreiner, M. (2014). Mapping of corrosion on a European scale: Model and results for carbon steel and zinc. Corrosion Engineering, Science and Technology, 49(6), 480–488. https://doi.org/10.1179/1743278214Y.0000000196.
- Morcillo, M., Díaz, I., Cano, H., & Chico, B. (2015). Atmospheric corrosion maps: A review. Corrosion Science, 98, 21–37. https://doi.org/10.1016/j.corsci.2015.05.013
- Ni, Y., Zhu, E., & Chen, L. (2025). Steel strand corrosion and corrosion-induced cracking in prestressed concrete. Buildings, 15(20), 3681. https://doi.org/10.3390/buildings15203681.
- Wang, X., Huang, P., Yuan, Y., Wang, D., Yang, Y., & Liu, X. (2025). Chloride diffusion and corrosion assessment in cracked marine concrete bridges. Construction and Building Materials, 399, 131789. https://doi.org/10.1016/j.conbuildmat.2025.131789.
- Barradas-Hernández, J., Barrera-Jiménez, D., Ramírez-González, I., Carpio-Santamaría, F., Vargas-Colorado, A., Márquez-Domínguez, S., Salgado-Estrada, R., Piña-Flores, J., & Zamora-Hernández, A. (2025). Deteriorated cyclic behaviour of corroded RC framed elements: A practical proposal for their modelling. Buildings, 15(9), 1950. https://doi.org/10.3390/buildings15091950.
- Ding, L., Dai, X., Gan, Y., & Zeng, Y. (2025). Impact of reinforcement corrosion on progressive collapse behavior of multi-story RC frames. Buildings, 15(17), 3110. https://doi.org/10.3390/buildings15173110.
- Li, Y., Yuan, W., Chang, J., & Zhao, B. (2025). Seismic performance of corroded RC bridge piers strengthened with UHPC shells. Buildings, 15(21), 3863. https://doi.org/10.3390/buildings15213863.
- Al-Mortadha, O., Abed, A.-M., & Daud, S. A. (2024). Flexural behaviour of corroded reinforced concrete beams under sustained loading. Civil and Environmental Engineering, 20(2), 1162–1173. https://doi.org/10.2478/cee-2024-0085.
- Moravčík, M., & Kraľovanec, J. (2024). Possibilities of indirect techniques for prestressing analysis of existing structures and bridges. Advances in Science and Technology, 147, 33–40. https://doi.org/10.4028/p-YpF9yi.
- Recha, F. (2026). Estimation of corrosion current density considering the uncertainty of the model parameters. Civil and Environmental Engineering, 21(1). https://doi.org/10.2478/cee-2026-0028.
- Santa, A. C., Tamayo, J. A., Correa, C. D., Gómez, M. A., Castaño, J. G., & Baena, L. M. (2022). Atmospheric corrosion maps as a tool for designing and maintaining building materials: A review. Heliyon, 8(9), e10438. https://doi.org/10.1016/j.heliyon.2022.e10438.
- King, F., Kolář, M., Briggs, S., Behazin, M., Keech, P., & Diomidis, N. (2024). Review of the modelling of corrosion processes and lifetime prediction for HLW/SF containers—Part 1: Process models. Corrosion and Materials Degradation, 5(2), 124–199. https://doi.org/10.3390/cmd5020007.
- Ghosh, R., Quaranta, G., Giaccu, G. F., Briseghella, B., & Nuti, C. (2024). Probabilistic corrosion hazard maps for reinforced concrete infrastructure. Structure and Infrastructure Engineering, 20(2), 123–145. https://doi.org/10.1080/15732479.2024.2303646.
- International Organization for Standardization. (2012). ISO 9223: Corrosion of metals and alloys—Corrosivity of atmospheres—Classification, determination and estimation. ISO.
- International Organization for Standardization. (2023). ISO 9224: Corrosion of metals and alloys—Guiding values for corrosivity categories. ISO.
- International Organization for Standardization. (2012). ISO 9225: Corrosion of metals and alloys—Measurement of environmental parameters affecting corrosivity. ISO.
- International Organization for Standardization. (2012). ISO 9226: Corrosion of metals and alloys—Determination of corrosion rate of standard specimens. ISO.
- Wikipedia contributors. (2025). World Geodetic System. Retrieved October 7, 2025, from https://en.wikipedia.org/wiki/World_Geodetic_System.
- Wikipedia contributors. (2025). S-JTSK. Retrieved October 7, 2025, from https://sk.wikipedia.org/wiki/S-JTSK.
- Strieška, M. (2019). Influence of corrosion on reliability of reinforced concrete structures (Doctoral dissertation). University of Žilina, Slovakia.
- Slovak Office of Standards, Metrology and Testing. (2015). STN EN 1992-1-1+A1: Eurocode 2—Design of concrete structures. Bratislava.
