Have a personal or library account? Click to login
Flow Velocity Distribution Near Curb-Opening Inlets: Experiments and Analysis Cover

Flow Velocity Distribution Near Curb-Opening Inlets: Experiments and Analysis

Open Access
|Jan 2026

References

  1. Kemper, S., & Schlenkhoff, A. (2019). Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions. Water Science and Technology, 79(9), 1717–1726. https://doi.org/10.2166/wst.2019.171.
  2. Gómez, M., & Russo, B. (2009). Hydraulic efficiency of continuous transverse grates for paved areas. Journal of Irrigation and Drainage Engineering, 135(2), 225–230. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(225).
  3. Pedro, L., Jorge L., Rita, F. C., Russo, B., & Gómez, M. (2016). Assessment of the ability of a volume of fluid model to reproduce the efficiency of a continuous transverse gully with grate. Journal of Irrigation and Drainage Engineering, 142(9), 04016039. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001058.
  4. Alfatlawi, T. J., Naji, A., Hamid, Z., & Hussein, M. (2021). Grate inlet hydraulic efficiency with varying porous asphalt aprons. Journal of Irrigation and Drainage Engineering, 147(10), 04021034. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001554.
  5. Russo, B. (2010). Design of surface drainage systems according to hazard criteria related to flooding in urban areas. Thesis (PhD). School of Civil Engineering, UPC, Barcelona, Spain.
  6. Garcia, A., Aboufoul, M., Asamoah, F., & Jing, D. (2019). Study the influence of the air void topology on porous asphalt clogging. Construction and Building Materials, 227, 116791. https://doi.org/10.1016/j.conbuildmat.2019.116791.
  7. Tiğrek, Ş., & Sipahi, S. (2012). Rehabilitation of storm water collection systems of urban environment using the small roads as conveyance channels. International Journal of Environmental Science and Technology, 9(1), 95–103. DOI: 10.1007/s13762-011-0002-x.
  8. Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to estimate the hydraulic efficiency of nontested continuous transverse grates. Journal of Irrigation and Drainage Engineering, 139(10), 864–871. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000625.
  9. Comport, B. C., & Thornton, C. I. (2012). Hydraulic efficiency of grate and curb inlets for urban storm drainage. Journal of Hydraulic Engineering, 138(10), 878–884. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000552.
  10. Khiadani, M. H., Kandasamy, J. & Beecham, S. (2007). Velocity distributions in spatially varied flow with increasing discharge. Journal of Hydraulic Engineering, 133(7), 721–728. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(721).
  11. Beecham, S., Khiadani, M. H., & Kandasamy, J. (2005). Friction factors for spatially varied flow with increasing discharge. Journal of Hydraulic Engineering, 131(9), 792–799. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(792).
  12. Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 1125, 335–355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335).
  13. Nezu, I., & Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR Monograph Series, Balkema, Rotterdam, The Netherlands.
  14. Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11), 1007–1011. Henderson, F. M. (1966). Open channel flow. Macmillan.
  15. Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill.
  16. Subramanya, K. (2009). Flow in open channels (3rd ed.). Tata McGraw-Hill.
  17. Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. https://doi.org/10.1146/annurev.fl.23.010191.001401.
  18. Bonnett J. P., Gresillon, D., Cabrit, B. & Frolov, V. (1995). Collective light scattering as non-particle laser velocimetry. Meas. Sci. Technol. 6 620. DOI: https://doi.org/10.1088/0957-0233/6/6/002.
  19. Tajikawa, T., Kohri, S., Mouri, T., Fujimi, T., Yamaguchi, H., & Ohba, K. (2024). Development of miniaturised fibre-optic laser doppler velocimetry for opaque lubrication system. Photonics, 11(9), 892. https://doi.org/10.3390/photonics11090892.
  20. Mohammed Alabas (2025). Experimental Study of the Coefficient of Discharge for Porous Stepped Spillways. Civil and Environmental Engineering, 21(1), 570–580. https://doi.org/10.2478/cee-2025-0043.
  21. Rajaratnam, N. (1990). Hydraulics laboratory manual. University of Alberta Press.
  22. ISO/IEC. (2008). Guide to the expression of uncertainty in measurement (GUM). International Organization for Standardization.
  23. Nalluri, C., & Featherstone, R. E. (2016). Civil engineering hydraulics (6th ed.). John Wiley & Sons.
  24. Garrote, J., et al. (2021). The Manning’s roughness coefficient calibration method for hydrodynamic models. Applied Sciences, 11(19), 2967. https://doi.org/10.3390/app11199267.
  25. Miguntanna, N., Moses, H., Sivakumar, M., Yang, S. Q., Enever, K., & Riaz, M. Z. B. (2020). Re-examining log law velocity profile in smooth open channel flows. Environmental Fluid Mechanics, 20(2), 367–385. https://doi.org/10.1007/s10652-019-09733-6.
  26. Guo, J., & Julien, P. Y. (2013). Modified log-wake law for smooth rectangular open channel flow. Journal of Hydraulic Research, 52(1), 121–128. https://doi.org/10.1080/00221686.2013.818584.
  27. Luchini, P. (2023). Uniform representation of the turbulent velocity profile in an open channel. arXiv preprint. https://arxiv.org/abs/2310.11542.
  28. Kong, J., Nugroho B., Bennetts, L. G., Chan, C. I. & Chin, R. C. (2024). Friction velocity determination techniques in turbulent boundary layers with miniature vortex generators. Experiments in Fluids, 65 (76). https://doi.org/10.1007/s00348-024-03817-w.
  29. Wengrove, M. E. & Foster, D. L. (2014). Field evidence of the viscous sublayer in a tidally forced developing boundary layer. Geophysical Research Letters, 41, 5084–5090. https://doi.org/10.1002/2014GL060709.
  30. Quibeuf, G., Charru, F., & Lacaze, L. (2020). Particle motion within the viscous sublayer of a turbulent shear flow. Physical Review Fluids, 5, 014306. https://doi.org/10.1103/PhysRevFluids.5.014306.
  31. Dakheel, A., Ismaeel, A., & Makki, J. (2024). Numerical modelling of local scour depth at non-uniform piers. Civil and Environmental Engineering, 20.2, pp. 699-710. https://doi.org/10.2478/cee-2024-0052.
  32. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. https://doi.org/10.1080/02723646.1981.10642213.
  33. Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995–9005. https://doi.org/10.1029/JC090iC05p08995.
  34. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
DOI: https://doi.org/10.2478/cee-2026-0069 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Nov 7, 2025
|
Accepted on: Nov 24, 2025
|
Published on: Jan 18, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Zaid H. Hasan, Mohammed A. Almajeed A Alabas, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT