References
- Kemper, S., & Schlenkhoff, A. (2019). Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions. Water Science and Technology, 79(9), 1717–1726. https://doi.org/10.2166/wst.2019.171.
- Gómez, M., & Russo, B. (2009). Hydraulic efficiency of continuous transverse grates for paved areas. Journal of Irrigation and Drainage Engineering, 135(2), 225–230. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(225).
- Pedro, L., Jorge L., Rita, F. C., Russo, B., & Gómez, M. (2016). Assessment of the ability of a volume of fluid model to reproduce the efficiency of a continuous transverse gully with grate. Journal of Irrigation and Drainage Engineering, 142(9), 04016039. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001058.
- Alfatlawi, T. J., Naji, A., Hamid, Z., & Hussein, M. (2021). Grate inlet hydraulic efficiency with varying porous asphalt aprons. Journal of Irrigation and Drainage Engineering, 147(10), 04021034. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001554.
- Russo, B. (2010). Design of surface drainage systems according to hazard criteria related to flooding in urban areas. Thesis (PhD). School of Civil Engineering, UPC, Barcelona, Spain.
- Garcia, A., Aboufoul, M., Asamoah, F., & Jing, D. (2019). Study the influence of the air void topology on porous asphalt clogging. Construction and Building Materials, 227, 116791. https://doi.org/10.1016/j.conbuildmat.2019.116791.
- Tiğrek, Ş., & Sipahi, S. (2012). Rehabilitation of storm water collection systems of urban environment using the small roads as conveyance channels. International Journal of Environmental Science and Technology, 9(1), 95–103. DOI: 10.1007/s13762-011-0002-x.
- Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to estimate the hydraulic efficiency of nontested continuous transverse grates. Journal of Irrigation and Drainage Engineering, 139(10), 864–871. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000625.
- Comport, B. C., & Thornton, C. I. (2012). Hydraulic efficiency of grate and curb inlets for urban storm drainage. Journal of Hydraulic Engineering, 138(10), 878–884. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000552.
- Khiadani, M. H., Kandasamy, J. & Beecham, S. (2007). Velocity distributions in spatially varied flow with increasing discharge. Journal of Hydraulic Engineering, 133(7), 721–728. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(721).
- Beecham, S., Khiadani, M. H., & Kandasamy, J. (2005). Friction factors for spatially varied flow with increasing discharge. Journal of Hydraulic Engineering, 131(9), 792–799. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(792).
- Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 1125, 335–355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335).
- Nezu, I., & Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR Monograph Series, Balkema, Rotterdam, The Netherlands.
- Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11), 1007–1011. Henderson, F. M. (1966). Open channel flow. Macmillan.
- Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill.
- Subramanya, K. (2009). Flow in open channels (3rd ed.). Tata McGraw-Hill.
- Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. https://doi.org/10.1146/annurev.fl.23.010191.001401.
- Bonnett J. P., Gresillon, D., Cabrit, B. & Frolov, V. (1995). Collective light scattering as non-particle laser velocimetry. Meas. Sci. Technol. 6 620. DOI: https://doi.org/10.1088/0957-0233/6/6/002.
- Tajikawa, T., Kohri, S., Mouri, T., Fujimi, T., Yamaguchi, H., & Ohba, K. (2024). Development of miniaturised fibre-optic laser doppler velocimetry for opaque lubrication system. Photonics, 11(9), 892. https://doi.org/10.3390/photonics11090892.
- Mohammed Alabas (2025). Experimental Study of the Coefficient of Discharge for Porous Stepped Spillways. Civil and Environmental Engineering, 21(1), 570–580. https://doi.org/10.2478/cee-2025-0043.
- Rajaratnam, N. (1990). Hydraulics laboratory manual. University of Alberta Press.
- ISO/IEC. (2008). Guide to the expression of uncertainty in measurement (GUM). International Organization for Standardization.
- Nalluri, C., & Featherstone, R. E. (2016). Civil engineering hydraulics (6th ed.). John Wiley & Sons.
- Garrote, J., et al. (2021). The Manning’s roughness coefficient calibration method for hydrodynamic models. Applied Sciences, 11(19), 2967. https://doi.org/10.3390/app11199267.
- Miguntanna, N., Moses, H., Sivakumar, M., Yang, S. Q., Enever, K., & Riaz, M. Z. B. (2020). Re-examining log law velocity profile in smooth open channel flows. Environmental Fluid Mechanics, 20(2), 367–385. https://doi.org/10.1007/s10652-019-09733-6.
- Guo, J., & Julien, P. Y. (2013). Modified log-wake law for smooth rectangular open channel flow. Journal of Hydraulic Research, 52(1), 121–128. https://doi.org/10.1080/00221686.2013.818584.
- Luchini, P. (2023). Uniform representation of the turbulent velocity profile in an open channel. arXiv preprint. https://arxiv.org/abs/2310.11542.
- Kong, J., Nugroho B., Bennetts, L. G., Chan, C. I. & Chin, R. C. (2024). Friction velocity determination techniques in turbulent boundary layers with miniature vortex generators. Experiments in Fluids, 65 (76). https://doi.org/10.1007/s00348-024-03817-w.
- Wengrove, M. E. & Foster, D. L. (2014). Field evidence of the viscous sublayer in a tidally forced developing boundary layer. Geophysical Research Letters, 41, 5084–5090. https://doi.org/10.1002/2014GL060709.
- Quibeuf, G., Charru, F., & Lacaze, L. (2020). Particle motion within the viscous sublayer of a turbulent shear flow. Physical Review Fluids, 5, 014306. https://doi.org/10.1103/PhysRevFluids.5.014306.
- Dakheel, A., Ismaeel, A., & Makki, J. (2024). Numerical modelling of local scour depth at non-uniform piers. Civil and Environmental Engineering, 20.2, pp. 699-710. https://doi.org/10.2478/cee-2024-0052.
- Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. https://doi.org/10.1080/02723646.1981.10642213.
- Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995–9005. https://doi.org/10.1029/JC090iC05p08995.
- Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
