Have a personal or library account? Click to login
The Effect of Polyaluminum Chloride (PAC) Residue on the Mechanical Properties and Freeze-Thaw Resistance of Cement Mortar Cover

The Effect of Polyaluminum Chloride (PAC) Residue on the Mechanical Properties and Freeze-Thaw Resistance of Cement Mortar

Open Access
|Dec 2025

References

  1. Atiea H M, Albahrani H S, Allaban M F, et al. (2025). Ceramic Waste as Fine and Coarse Aggregates for Sustainable Environment and Fire-Resistant Buildings. Civil and Environmental Engineering, 28(1): 535-544. https://doi.org/10.2478/cee-2025-0040
  2. Li C, Song Z, Zhang W, et al. (2022). Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. Journal of Water Process Engineering, 49: 103051. https://doi:10.1016/j.jwpe.2022.103051.
  3. Wu Z, Zhang X, Pang J, et al. (2020). High-poly-aluminum chloride sulfate coagulants and their coagulation performances for removal of humic acid. RSC advances, 10(12): 7155-7162. https://doi:10.1039/C9RA10189F.
  4. Matsui Y, Shirasaki N, Yamaguchi T, et al. (2017). Characteristics and components of poly-aluminum chloride coagulants that enhance arsenate removal by coagulation: Detailed analysis of aluminum species. Water research, 118: 177-186. https://doi:10.1016/j.watres.2017.04.037.
  5. Ghafari S, Aziz H A, Bashir M J K. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: A comparative study. Desalination, 257(1-3): 110-116. https://doi:10.1016/j.desal.2010.02.037.
  6. Tania Chatterjee, Sudipta Chatterjee, Dae S Lee, et al.(2009). Coagulation of soil suspensions containing nonionic or anionic surfactants using chitosan, polyacrylamide, and polyaluminium chloride .Chemosphere, 75 (10):1307-1314. https://doi:10.1016/j.chemosphere.2009.03.012.
  7. Singh S S, & Dikshit A K. (2010). Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride. Journal of Hazardous Materials, 176(1-3): 864-869. https://doi:10.1016/j.jhazmat.2009.11.116
  8. Shirasaki N, Matsushita T, Matsui Y, et al. (2014). Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.Water Research, 48(jan.1):375-386. https://doi:10.1016/j.watres.2013.09.052.
  9. Xue M, Gao B, Li R, et al. (2018). Aluminum formate(AF): Synthesis, characterization and application in dye wastewater treatment. Journal of Environmental Sciences,74: 95-106. https://doi:10.1016/j.jes.2018.02.013
  10. Zouboulis A I, & Tzoupanos N. (2010). Alternative cost-effective preparation method of polyaluminium chloride (PAC) coagulant agent: Characterization and comparative application for water/wastewater treatment. Desalination, 250(1): 339-344. https://doi:10.1016/j.desal.2009.09.053.
  11. Zakaria Z A, & Ahmad W A. (2020). Organic and Inorganic Matter Removal Using High Polymeric Al 13 Containing Polyaluminium Chloride. Water, Air, & Soil Pollution, 231: 1-10. https://doi:10.1007/s11270-020-04706-8.
  12. Li F, Jiang J Q, Wu S, et al. (2010). Preparation and performance of a high purity poly-aluminum chloride. Chemical Engineering Journal, 156(1): 64-69. https://doi:10.1016/j.cej.2009.09.034
  13. Li Q, Zhang J, Gao J, et al. (2022). Preparation of a novel non-burning polyaluminum chloride residue (PACR) compound filler and its phosphate removal mechanisms. Environmental science and pollution research, 29: 1532-1545. https://doi:10.1007/s11356-021-15724-2.
  14. Krivenko P, Kovalchuk O, Pasko A, et al. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151: 819-826. https://doi:10.1016/j.conbuildmat.2017.06.031.
  15. Cheng Y, Huang F, Li W, et al. (2016). Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Construction and Building Materials, 118: 164-170. https://doi:10.1016/j.conbuildmat.2016.05.020.
  16. Wong R C K, Gillott J E, Law S, et al. (2004). Calcined oil sands fine tailings as a supplementary cementing material for concrete. Cement and concrete research, 34(7): 1235-1242. https://doi:10.1016/j.cemconres.2003.12.018.
  17. Ghalehnovi M, Roshan N, Hakak E, et al. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. Journal of Cleaner Production, 240: 118213. https://doi:10.1016/j.jclepro.2019.118213.
  18. Ghalehnovi M, Shamsabadi E A, Khodabakhshian A, et al. (2019), Self-compacting architectural concrete production using red mud. Construction and building materials, 226: 418-427. https://doi:10.1016/j.conbuildmat.2019.07.248.
  19. Ortega J M, Cabeza M, Tenza-Abril A J, et al. (2019). Effects of red mud addition in the microstructure, durability and mechanical performance of cement mortars. Applied Sciences, 9(5): 984. https://doi:10.3390/app9050984
  20. Manfroi E. P., Cheriaf M., & Rocha J. C.(2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67: 29-36. https://doi:10.1016/j.conbuildmat.2013.10.031.
  21. Matos P R, Oliveira A L, Pelisser F, et al. (2018). Rheological behavior of Portland cement pastes and self-compacting concretes containing porcelain polishing residue. Construction and building materials, 175: 508-518. https://doi:10.1016/j.conbuildmat.2018.04.212.
  22. Steiner L. R., Bernardin A. M., & Pelisser F. (2015). Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials & Technologies, 4:30-35. https://doi:10.1016/j.susmat.2015.05.001.
  23. Liu J, Wang D. (2017). Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder technology, 320: 230-238. https://doi:10.1016/j.powtec.2017.07.052.
  24. Nemec J, Gandel R, Jerabek J, et al. Properties of selected alkali-activated materials for sustainable development[J]. Civil and Environmental Engineering, 2024, 20(1): 307-318. https://doi.org/10.2478/cee-2024-0024
  25. Peknikova A, Jerabek J, Gandel R, et al. Physical–Mechanical Behavior of High-Performance Concrete and Ordinary Concrete with Portland Cement Mixtures After Exposure to Selected Durability Tests Including High Thermal Stress[J]. Buildings, 2025, 15(7): 1029. https://doi.10.3390/buildings15071029
  26. Sun C, Chen L, Xiao J, et al. (2022). Effects of eco powders from solid waste on freeze-thaw resistance of mortar. Construction and Building Materials, 333: 127405. https://doi:10.1016/j.conbuildmat.2022.127405.
  27. Jin J, Liu T, Li M, et al. (2024). Influence of biomass fly ash on durability of self-consolidating cement-tailings grout: Resistance to freeze-thaw cycles and sulfate attack. Journal of Building Engineering, 93: 109842. https://doi:10.1016/j.jobe.2024.109842.
  28. Xu P, Guo Y, Zheng M, et al. (2024). Effect of Calcination Temperature on Polymerized Aluminum Chloride Waste Residue Cement Mortar. ACI Materials Journal, 121(6): 77-84. https://doi:10.14359/51743283.
  29. Xu, P., Tong, J., & Shi R. (2024). The mechanical and frost resistance properties of pressed concrete blocks mixed with the polymeric aluminum chloride waste residue. Scientific Reports, 14(1): 12128. https://doi:10.1038/s41598-024-61347-1.
  30. Xu, P., Guo. Y., Ding Y, et al. (2025). Effect of polymeric aluminum chloride waste residue and citric acid on the properties of magnesium oxychloride cement. Journal of Building Engineering, 101(000). https://doi:10.1016/j.jobe.2025.111864.
  31. Yang, W., Hou, Z., He H, et al. (2022). Effect of Particle Size and Dosing of Polymeric Aluminum Chloride Waste Residue on Cement Mortar. Geofluids, 2022(1): 9675715. https://doi:10.1155/2022/9675715.
  32. Chen Jianzhong. (1989). Determination of pore structure parameters of concrete by water absorption dynamics. Concrete and Reinforced Concrete, (06):9-13. https://doi:CNKI:SUN:HLTF.0.1989-06-001.
  33. Hansen, S., & Sadeghian P. (2020). Recycled gypsum powder from waste drywalls combined with fly ash for partial cement replacement in concrete. Journal of Cleaner Production, 274: 122785. https://doi:10.1016/j.jclepro.2020.122785.
  34. Wijaya, M. F., Ismanti, S., & Satyarno, I. Physical and Mechanical Properties of Fly Ash-Bottom Ash Geopolymer Mixtures on Expansive Clay Soil Stabilization as a Subgrade Material[J]. Civil and Environmental Engineering, 2024, 20(2): 890-904. https://doi.org/10.2478/cee-2024-0065.
DOI: https://doi.org/10.2478/cee-2026-0052 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Sep 13, 2025
Accepted on: Oct 18, 2025
Published on: Dec 9, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ming Yao, Huan Lian, Shaoqiang Chai, Hai Shang, Tianchu Feng, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT