References
- Atiea H M, Albahrani H S, Allaban M F, et al. (2025). Ceramic Waste as Fine and Coarse Aggregates for Sustainable Environment and Fire-Resistant Buildings. Civil and Environmental Engineering, 28(1): 535-544. https://doi.org/10.2478/cee-2025-0040
- Li C, Song Z, Zhang W, et al. (2022). Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. Journal of Water Process Engineering, 49: 103051. https://doi:10.1016/j.jwpe.2022.103051.
- Wu Z, Zhang X, Pang J, et al. (2020). High-poly-aluminum chloride sulfate coagulants and their coagulation performances for removal of humic acid. RSC advances, 10(12): 7155-7162. https://doi:10.1039/C9RA10189F.
- Matsui Y, Shirasaki N, Yamaguchi T, et al. (2017). Characteristics and components of poly-aluminum chloride coagulants that enhance arsenate removal by coagulation: Detailed analysis of aluminum species. Water research, 118: 177-186. https://doi:10.1016/j.watres.2017.04.037.
- Ghafari S, Aziz H A, Bashir M J K. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: A comparative study. Desalination, 257(1-3): 110-116. https://doi:10.1016/j.desal.2010.02.037.
- Tania Chatterjee, Sudipta Chatterjee, Dae S Lee, et al.(2009). Coagulation of soil suspensions containing nonionic or anionic surfactants using chitosan, polyacrylamide, and polyaluminium chloride .Chemosphere, 75 (10):1307-1314. https://doi:10.1016/j.chemosphere.2009.03.012.
- Singh S S, & Dikshit A K. (2010). Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride. Journal of Hazardous Materials, 176(1-3): 864-869. https://doi:10.1016/j.jhazmat.2009.11.116
- Shirasaki N, Matsushita T, Matsui Y, et al. (2014). Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.Water Research, 48(jan.1):375-386. https://doi:10.1016/j.watres.2013.09.052.
- Xue M, Gao B, Li R, et al. (2018). Aluminum formate(AF): Synthesis, characterization and application in dye wastewater treatment. Journal of Environmental Sciences,74: 95-106. https://doi:10.1016/j.jes.2018.02.013
- Zouboulis A I, & Tzoupanos N. (2010). Alternative cost-effective preparation method of polyaluminium chloride (PAC) coagulant agent: Characterization and comparative application for water/wastewater treatment. Desalination, 250(1): 339-344. https://doi:10.1016/j.desal.2009.09.053.
- Zakaria Z A, & Ahmad W A. (2020). Organic and Inorganic Matter Removal Using High Polymeric Al 13 Containing Polyaluminium Chloride. Water, Air, & Soil Pollution, 231: 1-10. https://doi:10.1007/s11270-020-04706-8.
- Li F, Jiang J Q, Wu S, et al. (2010). Preparation and performance of a high purity poly-aluminum chloride. Chemical Engineering Journal, 156(1): 64-69. https://doi:10.1016/j.cej.2009.09.034
- Li Q, Zhang J, Gao J, et al. (2022). Preparation of a novel non-burning polyaluminum chloride residue (PACR) compound filler and its phosphate removal mechanisms. Environmental science and pollution research, 29: 1532-1545. https://doi:10.1007/s11356-021-15724-2.
- Krivenko P, Kovalchuk O, Pasko A, et al. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151: 819-826. https://doi:10.1016/j.conbuildmat.2017.06.031.
- Cheng Y, Huang F, Li W, et al. (2016). Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Construction and Building Materials, 118: 164-170. https://doi:10.1016/j.conbuildmat.2016.05.020.
- Wong R C K, Gillott J E, Law S, et al. (2004). Calcined oil sands fine tailings as a supplementary cementing material for concrete. Cement and concrete research, 34(7): 1235-1242. https://doi:10.1016/j.cemconres.2003.12.018.
- Ghalehnovi M, Roshan N, Hakak E, et al. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. Journal of Cleaner Production, 240: 118213. https://doi:10.1016/j.jclepro.2019.118213.
- Ghalehnovi M, Shamsabadi E A, Khodabakhshian A, et al. (2019), Self-compacting architectural concrete production using red mud. Construction and building materials, 226: 418-427. https://doi:10.1016/j.conbuildmat.2019.07.248.
- Ortega J M, Cabeza M, Tenza-Abril A J, et al. (2019). Effects of red mud addition in the microstructure, durability and mechanical performance of cement mortars. Applied Sciences, 9(5): 984. https://doi:10.3390/app9050984
- Manfroi E. P., Cheriaf M., & Rocha J. C.(2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67: 29-36. https://doi:10.1016/j.conbuildmat.2013.10.031.
- Matos P R, Oliveira A L, Pelisser F, et al. (2018). Rheological behavior of Portland cement pastes and self-compacting concretes containing porcelain polishing residue. Construction and building materials, 175: 508-518. https://doi:10.1016/j.conbuildmat.2018.04.212.
- Steiner L. R., Bernardin A. M., & Pelisser F. (2015). Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials & Technologies, 4:30-35. https://doi:10.1016/j.susmat.2015.05.001.
- Liu J, Wang D. (2017). Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder technology, 320: 230-238. https://doi:10.1016/j.powtec.2017.07.052.
- Nemec J, Gandel R, Jerabek J, et al. Properties of selected alkali-activated materials for sustainable development[J]. Civil and Environmental Engineering, 2024, 20(1): 307-318. https://doi.org/10.2478/cee-2024-0024
- Peknikova A, Jerabek J, Gandel R, et al. Physical–Mechanical Behavior of High-Performance Concrete and Ordinary Concrete with Portland Cement Mixtures After Exposure to Selected Durability Tests Including High Thermal Stress[J]. Buildings, 2025, 15(7): 1029. https://doi.10.3390/buildings15071029
- Sun C, Chen L, Xiao J, et al. (2022). Effects of eco powders from solid waste on freeze-thaw resistance of mortar. Construction and Building Materials, 333: 127405. https://doi:10.1016/j.conbuildmat.2022.127405.
- Jin J, Liu T, Li M, et al. (2024). Influence of biomass fly ash on durability of self-consolidating cement-tailings grout: Resistance to freeze-thaw cycles and sulfate attack. Journal of Building Engineering, 93: 109842. https://doi:10.1016/j.jobe.2024.109842.
- Xu P, Guo Y, Zheng M, et al. (2024). Effect of Calcination Temperature on Polymerized Aluminum Chloride Waste Residue Cement Mortar. ACI Materials Journal, 121(6): 77-84. https://doi:10.14359/51743283.
- Xu, P., Tong, J., & Shi R. (2024). The mechanical and frost resistance properties of pressed concrete blocks mixed with the polymeric aluminum chloride waste residue. Scientific Reports, 14(1): 12128. https://doi:10.1038/s41598-024-61347-1.
- Xu, P., Guo. Y., Ding Y, et al. (2025). Effect of polymeric aluminum chloride waste residue and citric acid on the properties of magnesium oxychloride cement. Journal of Building Engineering, 101(000). https://doi:10.1016/j.jobe.2025.111864.
- Yang, W., Hou, Z., He H, et al. (2022). Effect of Particle Size and Dosing of Polymeric Aluminum Chloride Waste Residue on Cement Mortar. Geofluids, 2022(1): 9675715. https://doi:10.1155/2022/9675715.
- Chen Jianzhong. (1989). Determination of pore structure parameters of concrete by water absorption dynamics. Concrete and Reinforced Concrete, (06):9-13. https://doi:CNKI:SUN:HLTF.0.1989-06-001.
- Hansen, S., & Sadeghian P. (2020). Recycled gypsum powder from waste drywalls combined with fly ash for partial cement replacement in concrete. Journal of Cleaner Production, 274: 122785. https://doi:10.1016/j.jclepro.2020.122785.
- Wijaya, M. F., Ismanti, S., & Satyarno, I. Physical and Mechanical Properties of Fly Ash-Bottom Ash Geopolymer Mixtures on Expansive Clay Soil Stabilization as a Subgrade Material[J]. Civil and Environmental Engineering, 2024, 20(2): 890-904. https://doi.org/10.2478/cee-2024-0065.
