Have a personal or library account? Click to login
Integrating Hydrological–Hydraulic–AI (LSTM) Models for Improved Water Level Forecasting: Red River - Thai Binh Basin Cover

Integrating Hydrological–Hydraulic–AI (LSTM) Models for Improved Water Level Forecasting: Red River - Thai Binh Basin

Open Access
|Nov 2025

References

  1. ADB (2020). Climate risk country profile: Vietnam. Asian Development Bank, pp. 27.
  2. Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A Simple Inertial Formulation of the Shallow Water Equations for Efficient Two-Dimensional Flood Inundation Modelling. Journal of Hydrology, 387(1-2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027
  3. Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., & Kirchner, J. W. (2019). The Relative Importance of Different Flood-Generating Mechanisms Across Europe. Water Resources Research, 55(6), 4582–4593. https://doi.org/10.1029/2019WR024841
  4. DHI (2011). MIKE 11: A Modelling System for Rivers and Channels - User Guide. Danish Hydraulic Institute, pp. 542. Online available:https://euroaquae.tucottbus.de/Semester3/LectureNotes/Module31/Rhine/Mike11/MIKE11_UserManual.pdf
  5. Duy, N. H. (2023). Daily Streamflow Forecasting by Machine Learning in Tra Khuc river in Vietnam. Vietnam Journal of Earth Sciences, 45(1), 82–97. https://doi.org/10.15625/2615-9783/17914
  6. Elrahman, S. I. M. A., & Ataalmanan, I. M. I. (2023). Determination of the Hydrological and Morphometric Characteristics Using GIS. Civil and Environmental Engineering, 19(1), 39-47. https://doi.org/10.2478/cee-2023-0004
  7. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, pp. 785. Online available: http://alvarestech.com/temp/deep/Deep%20Learning%20by%20Ian%20Goodfellow,%20Yoshua%20Bengio,%20Aaron%20Courville%20(z-lib.org).pdf
  8. Hakala, K., Addor, N., Teutschbein, C., Vis, M., Dakhlaoui, H., & Seibert, J. (2020). Hydrological Modeling for Climate Change Impact. Encyclopedia of Water: Science, Technology, and Society, Edited by Patricia A. Maurice, pp. 1–20. https://doi.org/10.1002/9781119300762.wsts0062
  9. Hanh, D. K., Truong, D. D., & Trinh, B. T. K. (2024). Application of Numerical Modeling and GIS for Simulating Inundation Under Dam Failure Scenarios. Civil and Environmental Engineering, 20(1), 233–254. https://doi.org/10.2478/cee-2024-0019
  10. Hanh, N. D., Giang, N. T., Hoa, L. X., Vinh, T. N., & Nguyen, H. D. (2024). Multi-Step-Ahead Prediction of Water Levels Using Machine Learning: A Comparative Analysis in the Vietnamese Mekong Delta. Vietnam Journal of Earth Sciences, 46(4), 468–488. https://doi.org/10.15625/2615-9783/21067
  11. Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. https://doi.org/10.3390/w10111543
  12. IPCC (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2021, pp. 2391.
  13. Jayapadma, J. M. M. U., Wickramaarachchi, T. N., Silva, G. H. A. C., Ishidaira, H., & Magome, J. (2018). Rainfall-Runoff Modelling Using MIKE 11 (NAM Model): A Case Study of GIN River Basin. Proceeding of the 6th International Symposium on Advances in Civil and Environmental Engineering Practices for Sustainable Development (ACEPS-2018), pp. 231–238.
  14. Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. Proceeding of the conference paper at the 3rd International Conference for Learning Representations, San Diego. https://doi.org/10.48550/arXiv.1412.6980.
  15. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Hernegger, M. (2018). Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005–6022. https://doi.org/10.5194/hess-22-6005-2018.
  16. Le, X. H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water, 11(7), 1387. https://doi.org/10.3390/w11071387.
  17. Le, G. S., Tran, L. T., Ho, L. H., & Park, E. (2023). F28: A Novel Coupling Strategy For 1D/2D Hydraulic Models for Flood Risk Assessment of the Mekong Delta. Journal of Hydroinformatics, 25(6), 2369–2388. https://doi.org/10.2166/hydro.2023.108.
  18. Leščešen, I., Tanhapour, M., Pekárová, P., Miklánek, P., & Bajtek, Z. (2025). Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia). Water, 17(6), 907. https://doi.org/10.3390/w17060907.
  19. Linh, N. T. M., Tri, D. Q., Thai, H. T., & Don, N. C. (2018). Application of a Two-Dimensional Model for Flooding and Floodplain Simulation: Case Study in Tra Khuc-Song Ve River in Viet Nam. Lowland Technology International, 20(03), 367–378.
  20. Liu, D., Jiang, W., Mu, L., & Wang, S. (2020). Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River. IEEE Access, 8, 90069–90086. https://doi.org/10.1109/ACCESS.2020.2993874.
  21. Loi, N. K., Liem, N. D., Tu, L. H., Hong, N. T., Truong, C. D., Tram, V. N. Q., Nhat, T. T., Anh, T. N., & Jeong, J. (2019). Automated Procedure of Real-Time Flood Forecasting in Vu Gia – Thu Bon River Basin, Vietnam by Integrating SWAT and HEC-RAS Models. Journal of Water & Climate Change, 10(3), 535–545. https://doi.org/10.2166/wcc.2018.015.
  22. Madsen, M. (2000). Automatic Calibration of a Conceptual Rainfall–Runoff Model Using Multiple Objectives. Journal of Hydrology, 235(3–4), 276–288. https://doi.org/10.1016/S0022-1694(00)00279-1
  23. Nhan dan (2025). Online available: https://nhandan.vn/bao-dam-an-ninh-nguon-nuoc-luu-vuc-song-hong-song-thai-binh-post894722.html?utm_source=chatgpt.com (Assessed on 19/7/2025).
  24. Quang, N. H., Tuan, V. A., Hang, L. T. T., Hung, N. M., The, D. T., Dieu, D. T., Anh, N. D., & Hackney, C. R. (2020). Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin. Water, 12(1), 71. https://doi.org/10.3390/w12010071
  25. Sabzipour, B., Arsenaurlt, R., Troin, M., Martel, J. L., Brissette, F., Brunet, F., & Mai, J. (2023). Comparing a Long Short-Term
  26. Memory (LSTM) Neural Network with a Physically-Based Hydrological Model for Streamflow Forecasting Over a Canadian Catchment. Journal of Hydrology, 627(A), 130380. https://doi.org/10.1016/j.jhydrol.2023.130380
  27. Sahoo, B. B., Jha, R., Singh, A., Kumar, D. (2019). Long Short-Term Memory (LSTM) Recurrent Neural Network for Low-Flow Hydrological Time Series Forecasting. Acta Geophysica, 67(4), 1471–1481. https://doi.org/10.1007/s11600-019-00330-1
  28. Seibert, J., & Vis, M. J. P. (2012). Teaching Hydrological Modeling with a User-Friendly Catchment-Runoff-Model Software Package. Hydrology and Earth System Sciences, 16, 3315–3325. https://doi.org/10.5194/hess-16-3315-2012
  29. Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, 54(11), 8558–8593. https://doi.org/10.1029/2018WR022643
  30. Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A comprehensive review of deep learning applications in hydrology and water resources. Water Science & Technology, 82(12), 2635–2670. https://doi.org/10.2166/wst.2020.369
  31. Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, 54(11), 8558–8593. https://doi.org/10.1029/2018WR022643
  32. Tao, L., He, X., Li, J., &Yang, D. (2019). A multiscale long short-term memory model with attention mechanism for improving monthly precipitation prediction. Journal of Hydrology, 602, 126815. https://doi.org/10.1016/j.jhydrol.2021.126815
  33. Thai, T.H., & Tri, D.Q. (2019). Combination of Hydrologic and Hydraulic Modeling on Flood and Inundation Warning: Case Study at Tra Khuc-Ve River Basin in Vietnam. Vietnam Journal of Earth Sciences, 41(03), 240–251. https://doi.org/10.15625/0866-7187/41/3/13866
  34. Thai, T. H., Tri, D. Q., Anh, N. X., Hoa, V. V., Nguyen, H. V., Nhat, N. V., Tuyet, Q. T. T., Pham, H. T. T., Chung, P. H., Thang, V. V., & Thuc, T. D. (2023). Numerical Simulation of the Flood and Inundation Caused by Typhoon Noru Downstream from the Vu Gia-Thu Bon River Basin. Sustainability, 15(10), 8203. https://doi.org/10.3390/su15108203
  35. Thanh, N. T., Nhung, D. H., Thuy, N. T., Thuc, T. D., Thang, V. V., Tri, D. Q., & Doanh, V. V. (2025). Sensitive Analysis of WRF-Hydro’s Parameters for Multi-Peak Flood Flow: A Case Study in the Ve River Basin, Vietnam. Civil and Environmental Engineering, 21(1), 334–348. https://doi.org/10.2478/cee-2025-0026
  36. Tri, D. Q., Thai, T. H., & Vo, V. V. (2022). Bias-Correction Data of IFS Rainfall Forecasts for Hydrological and Hydraulic Models to Forecast Flood Events. Arabian Journal of Geosciences, 15, 1535. https://doi.org/10.1007/s12517-022-10801-3
  37. Trinh, X. M., & Molkenthin, F. (2020). Flood Risk Assessment in the Tra Bong River Catchment, Vietnam. In: Gourbesville, P., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore, pp. 575–592. https://doi.org/10.1007/978-981-15-5436-0_45
  38. Truong, V., Hoang, T., & Truong, D. (2025). Deep Learning for Downstream Water Level Prediction in Complex Hydrology Systems: An LSTM Approach. Open Journal of Modern Hydrology, 15(2), 218–232. https://doi.org/10.4236/ojmh.2025.152014
  39. UNDRR (2020). The Human Cost of Disasters: An overview of the last 20 years. United Nations Office for Disaster Risk Reduction, pp. 28. Online available: https://www.preventionweb.net/files/74124_humancostofdisasters20002019reportu.pdf?startDownload=true
  40. Wang, W., Liu, J., Li, C., Liu, Y., & Yu, F. (2021). Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity. Remote Sensing, 13(4), 595. https://doi.org/10.3390/rs13040595
  41. Yuan, Z., Liu, J., Liu, Y., Zhang, Q., Li, Y., & Li, Z. (2022). A Two-Stage Modelling Method for Multi-Station Daily Water Level Prediction. Environmental Modelling & Software, 156, 105468. https://doi.org/10.1016/j.envsoft.2022.105468
  42. Yu, Q., Tolson, B. A., Shen, H., Han, M., Mai, J., & Lin, J. (2024). Enhancing Long Short-Term Memory (LSTM)-Based Streamflow Prediction with a Spatially Distributed Approach. Hydrology and Earth System Sciences, 28(9), 2107–2122. https://doi.org/10.5194/hess-28-2107-2024
  43. Zhang, Y., Zhou, Z., Van Griensven Thé, J., Yang, S. X., & Gharabaghi, B. (2023). Flood Forecasting Using Hybrid LSTM and GRU Models with Lag Time Preprocessing. Water, 15(22), 3982. https://doi.org/10.3390/w15223982
DOI: https://doi.org/10.2478/cee-2026-0042 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Sep 8, 2025
Accepted on: Sep 24, 2025
Published on: Nov 12, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Tri Doan Quang, Nhat Nguyen Van, Tuyet Quach Thi Thanh, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT