Have a personal or library account? Click to login
Sustainable Asphalt Mixtures Using Agricultural Waste Fillers: A Systematic Review of Rice Husk Ash, Bagasse Ash and Palm Shell Ash Cover

Sustainable Asphalt Mixtures Using Agricultural Waste Fillers: A Systematic Review of Rice Husk Ash, Bagasse Ash and Palm Shell Ash

Open Access
|Oct 2025

References

  1. Adeoti, G. O., Hounkpe, P. S., & Adjidjola, I. A. (2025). Sustainable Innovation in Road Construction: Enhancing Moisture Resistance of Bituminous Mixtures with Bamboo and Bagasse Ashes. Materials Sciences and Applications, 16(02), 47–78. https://doi.org/10.4236/msa.2025.162004
  2. Ali, B. S., & Al-Tameemi, A. F. (2025). Evaluation of the Performance Characteristics of Synthetic Fiber-Modified Hot Mix Asphalt. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0066
  3. Alsharafi, M. A. A., Almaswari, A. A., & Algaboby, Z. M. (2024). CEMENT KILN DUST WITH FINE VOLCANIC ASH AS SUBSTITUTE FILLERS FOR HOT MIX ASPHALT. 13(13), 1–25. https://doi.org/10.2478/rjti-2024-0013
  4. Amanda, M. T., Mauliana, R., Rahman, T., & Suparma, L. B. (2025). Evaluating the performance of porous asphalt mixtures with polymer-modified and unmodified bitumen. Discover Civil Engineering, 2(1), 31. https://doi.org/10.1007/s44290-025-00196-x
  5. Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes – A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
  6. Arabani, M., & Tahami, S. A. (2017a). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350–358. https://doi.org/10.1016/j.conbuildmat.2017.05.127
  7. Arabani, M., & Tahami, S. A. (2017b). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350–358. https://doi.org/10.1016/j.conbuildmat.2017.05.127
  8. Baffoe, E., & Ghahremaninezhad, A. (2022). The effect of biomolecules on enzyme-induced calcium carbonate precipitation in cementitious materials. Construction and Building Materials, 345, 128323. https://doi.org/10.1016/j.conbuildmat.2022.128323
  9. Bayapureddy, Y., Muniraj, K., & Mutukuru, M. reddy G. (2024). Enhancing material properties of agro-industrial waste sugarcane bagasse ash—Way towards sustainable development. Sustainable Futures, 7, 100154. https://doi.org/10.1016/j.sftr.2024.100154
  10. Buritatum, A., Suddeepong, A., Horpibulsuk, S., Akkharawongwhatthana, K., Yaowarat, T., Hoy, M., Bunsong, C., & Arulrajah, A. (2022). Improved Performance of Asphalt Concretes using Bottom Ash as an Alternative Aggregate. Sustainability, 14(12), 7033. https://doi.org/10.3390/su14127033
  11. Chan, M. Y., Teh, P. L., & Yeoh, C. K. (2019). Effect of Blend Ratio on the Properties of Polystyrene/Acrylonitrile Butadiene Styrene/Carbon Black (PS/ABS/CB) Conductive Materials. Journal of Engineering Science, 15, 63–75. https://doi.org/10.21315/jes2019.15.6
  12. Chaudhuri, P. B., Mitra, A., & Sahoo, S. (2018). Free vibration analysis of antisymmetric angle ply laminated composite stiffened hypar shell with cut out. Materials Today: Proceedings, 5(2), 5563–5572. https://doi.org/10.1016/j.matpr.2017.12.147
  13. Chindaprasirt, P., Kampala, A., Daprom, P., Jitsangiam, P., & Horpibulsuk, S. (2021). Role of Fly Ash on Strength Properties of Rejuvenated Soil Cement for Pavement Materials. Civil and Environmental Engineering, 17(2), 583–596. https://doi.org/10.2478/cee-2021-0059
  14. Damanhuri, A. A. M., Lubis, A. M. H. S., Hariri, A., Herawan, S. G., Roslan, M. H. I., & Hussin, M. S. F. (2020). MECHANICAL PROPERTIES of RICE HUSK ASH (RHA) BRICK AS PARTIAL REPLACEMENT of CLAY. Journal of Physics: Conference Series, 1529(4). https://doi.org/10.1088/1742-6596/1529/4/042034
  15. De Silva, T.-A., & Forbes, S. L. (2016). Sustainability in the New Zealand horticulture industry. Journal of Cleaner Production, 112, 2381–2391. https://doi.org/10.1016/j.jclepro.2015.10.078
  16. Doğruyol, M., & Durmaz, M. (2025). The Effect of Pistachio Vera Shell Ash on Concrete Performance. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 14(1), 513–528. https://doi.org/10.17798/bitlisfen.1602440
  17. Du, Y., Chen, J., Han, Z., & Liu, W. (2018). A review on solutions for improving rutting resistance of asphalt pavement and test methods. Construction and Building Materials, 168, 893–905. https://doi.org/10.1016/j.conbuildmat.2018.02.151
  18. During, O., Bhochhibhoya, S., Maskey, R. K., & Joshi, R. (2018). Rice Husk Resource for Energy and Cementitious Products with Low CO 2 Contributions . Nordic Concrete Research, 59(1), 45–58. https://doi.org/10.2478/ncr-2018-0014
  19. Fareed, A., Zaidi, S. B. A., Ahmad, N., Hafeez, I., Ali, A., & Ahmad, M. F. (2020). Use of agricultural waste ashes in asphalt binder and mixture: A sustainable solution to waste management. Construction and Building Materials, 259, 120575. https://doi.org/10.1016/j.conbuildmat.2020.120575
  20. Fayissa, B., Gudina, O., & Yigezu, B. (2020a). Application of Sawdust Ash as Filler Material in Asphaltic Concrete Production. Civil and Environmental Engineering, 16(2), 351–359. https://doi.org/10.2478/cee-2020-0035
  21. Fayissa, B., Gudina, O., & Yigezu, B. (2020b). Application of Sawdust Ash as Filler Material in Asphaltic Concrete Production. Civil and Environmental Engineering, 16(2), 351–359. https://doi.org/10.2478/cee-2020-0035
  22. Fitra Ramdhani, Bambang Sugeng Subagio, Harmein Rahman, & Russ Bona Frazila. (2024). Performance Characteristics of Nano Palm Shell Ash (NPSA) in Asphalt Mixture. Journal of Advanced Research in Applied Sciences and Engineering Technology, 46(1), 1–14. https://doi.org/10.37934/araset.46.1.114
  23. Fjelsted, L., Scheutz, C., Christensen, A. G., Larsen, J. E., & Kjeldsen, P. (2020). Biofiltration of diluted landfill gas in an active loaded open-bed compost filter. Waste Management, 103, 1–11. https://doi.org/10.1016/j.wasman.2019.12.005
  24. Guo, Z., Chen, Z., Yang, X., Zhang, L., Li, C., He, C., & Xu, W. (2025). The Influence of Rice Husk Ash Incorporation on the Properties of Cement-Based Materials. Materials, 18(2), 460. https://doi.org/10.3390/ma18020460
  25. Hermansyah, H., Isnan, A. F., & Yanti, F. (2022). Karakteristik Marshall pada Campuran Aspal HRS-WC Menggunakan Abu Sekam Padi. Jurnal Manajemen Teknologi & Teknik Sipil, 5(1), 60. https://doi.org/10.30737/jurmateks.v5i1.2770
  26. Ikumapayi, O. M., & Akinlabi, E. T. (2018). Composition, characteristics and socioeconomic benefits of palm kernel shell exploitation-an overview. Journal of Environmental Science and Technology, 11(5), 220–232. https://doi.org/10.3923/jest.2018.220.232
  27. Inyang, E. O., Usanga, I. N., & Mkpa, E. O. (2024). Micro - Structure Analysis and Mechanical Behaviour of Hot Mix Asphalt Modified with Reclaimed Asphalt Pavement Using Palm Kernel Shell Ash as Mineral Filler. 10(3), 56–65. doi: 10.11648/j.ijtet.20241003.12
  28. Jain, S., Chandrappa, A. K., & Neelancherry, R. (2024). Utilization of Agricultural Wastes and By-Products in Asphalt: A Critical Review. In Agricultural Waste to Value-Added Products (pp. 207–227). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2535-9_10
  29. Jwaida, Z., Al Quraishy, Q. A., Almuhanna, R. R. A., Dulaimi, A., Bernardo, L. F. A., & Andrade, J. M. de A. (2024). The Use of Waste Fillers in Asphalt Mixtures: A Comprehensive Review. CivilEng, 5(4), 801–826. https://doi.org/10.3390/civileng5040042
  30. Kareem, A. I., Khaled, T. T., Aljubory, A., Al-Hamd, R. K. S., & Isaac, D. (2024a). Investigating the Influence of Mineral Fillers at Australian Asphalt Mixtures. Civil and Environmental Engineering, 20(1), 109–123. https://doi.org/10.2478/cee-2024-0010
  31. Kareem, A. I., Khaled, T. T., Aljubory, A., Al-Hamd, R. K. S., & Isaac, D. (2024b). Investigating the Influence of Mineral Fillers at Australian Asphalt Mixtures. Civil and Environmental Engineering, 20(1), 109–123. https://doi.org/10.2478/cee-2024-0010
  32. Kartini, K., Nurul Nazierah, M. Y., Zaidahtulakmal, M. ., & Siti Aisyah, G. (2012). Effects of Silica in Rice Husk Ash (RHA) in producing High Strength Concrete. International Journal of Engineering and Technology, 2(12), 1951–1956.
  33. Khan, M. N. N., Jamil, M., Karim, M. R., Zain, M. F. M., & Kaish, A. B. M. A. (2015). Utilization of rice husk ash for sustainable construction: A review. Research Journal of Applied Sciences, Engineering and Technology, 9(12), 1119–1127. https://doi.org/10.19026/rjaset.9.2606
  34. Khan, N. (2021). Rutting Performance of Hot Mix Asphalt Using Bagasse Ash as Filler. Sir Syed University Research Journal of Engineering & Technology, 11(2), 4–9. https://doi.org/10.33317/ssurj.151
  35. Kim, Y.-M., Kim, K., & Le, T. H. M. (2024). Advancing Sustainability and Performance with Crushed Bottom Ash as Filler in Polymer-Modified Asphalt Concrete Mixtures. Polymers, 16(12), 1683. https://doi.org/10.3390/polym16121683
  36. Liang, Y., Bai, T., Zhou, X., Wu, F., Chenxin, C., Peng, C., Fuentes, L., Walubita, L. F., Li, W., & Wang, X. (2023). Assessing the Effects of Different Fillers and Moisture on Asphalt Mixtures’ Mechanical Properties and Performance. Coatings, 13(2), 288. https://doi.org/10.3390/coatings13020288
  37. Liu, X., Lu, Z., Zhang, J., Liu, B., Cao, Y., & Qian, X. (2020). The self-lubricating behavior and evolution mechanisms of the surface microporous friction interface of M50-(Sn-Ag-Cu) material. Journal of Materials Research and Technology, 9(4), 8207–8220. https://doi.org/10.1016/j.jmrt.2020.05.095
  38. Lu, Z., Sha, A., Wang, W., & Gao, J. (2020). Studying the Properties of SBS/Rice Husk Ash-Modified Asphalt Binder and Mixture. Advances in Materials Science and Engineering, 2020. https://doi.org/https://doi.org/10.1155/2020/4545063
  39. Mashaan, N. S., Ali, A. H., Karim, M. R., & Abdelaziz, M. (2014). A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement. The Scientific World Journal, 2014, 1–21. https://doi.org/10.1155/2014/214612
  40. Mistry, R., Karmakar, S., & Kumar Roy, T. (2019). Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt. Road Materials and Pavement Design, 20(4), 979–990. https://doi.org/10.1080/14680629.2017.1422791
  41. Mistry, R., & Kumar Roy, T. (2021). Performance evaluation of bituminous mix and mastic containing rice husk ash and fly ash as filler. Construction and Building Materials, 268, 121187. https://doi.org/10.1016/j.conbuildmat.2020.121187
  42. Mohajerani, A., Ashdown, M., Abdihashi, L., & Nazem, M. (2017). Expanded polystyrene geofoam in pavement construction. Construction and Building Materials, 157, 438–448. https://doi.org/10.1016/j.conbuildmat.2017.09.113
  43. Naqvi, S. R., Hameed, Z., Tariq, R., Taqvi, S. A., Ali, I., Niazi, M. B. K., Noor, T., Hussain, A., Iqbal, N., & Shahbaz, M. (2019). Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Management, 85, 131–140. https://doi.org/10.1016/j.wasman.2018.12.031
  44. Nava Bravo, I., Velásquez-Orta, S. B., Cuevas-García, R., Monje-Ramírez, I., Harvey, A., & Orta Ledesma, M. T. (2019). Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel, 241, 255–263. https://doi.org/10.1016/j.fuel.2018.12.071
  45. Oktavia, A., Sukmana, I., Arif, Y. Z., & Nama, G. F. (2022). The effect of filler adding palm kernel shell ash on durability and marshall values properties of asphalt concrete mix. Journal of Engineering and Scientific Research, 4(1), 23–29. https://doi.org/10.23960/jesr.v4i1.100
  46. Omoremiju, A. B., Samson, A. O., & David, O. (2024). EVALUATION OF PALM KERNEL SHELL ASH AS FILLERS IN ASPHALT MIXTURE FOR. 12(9), 1672–1683.
  47. Pachchigar, S., Hannl, T. K., & Öhman, M. (2024). Ash Formation during Combustion of Rice Husks in Entrained Flow Conversion Conditions. Energy and Fuels, 38(14), 13278–13294. https://doi.org/10.1021/acs.energyfuels.4c01413
  48. Patel, A., Arora, N., Pruthi, V., & Pruthi, P. A. (2017). Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. Journal of Cleaner Production, 142, 2858–2864. https://doi.org/10.1016/j.jclepro.2016.10.184
  49. Pelisser, F., Neto, A. B. da S. S., Rovere, H. L. La, & Pinto, R. C. de A. (2010). Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking. Construction and Building Materials, 24(11), 2171–2176. https://doi.org/10.1016/j.conbuildmat.2010.04.041
  50. Putri, E. E., Kurniati, T., Yosritzal, Y., & Putra, A. D. E. (2020). Effects of Gondorukem addition on AC-WC pavement containing reclaimed asphalt pavement. IOP Conference Series: Materials Science and Engineering, 933(1). https://doi.org/10.1088/1757-899X/933/1/012029
  51. Putri, E. E., Yosritzal, Y., Agusyaini, A.-A., & Budiawan, W. (2022). Evaluating the effect of using shredded waste tire in the asphalt concrete-binder coarse on Marshall parameters. Sinergi, 26(1), 107. https://doi.org/10.22441/sinergi.2022.1.014
  52. Ragab, M., & Abo El-Naga, I. (2022). Performance Assessment of Cold Asphalt Concrete Mixtures Containing Recycled Paving Materials. Arabian Journal for Science and Engineering, 47(4), 4351–4360. https://doi.org/10.1007/s13369-021-06101-9
  53. Rahmouni, I., Promis, G., R’mili, A., Beji, H., & Limam, O. (2019). Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete. Construction and Building Materials, 197, 241–250. https://doi.org/10.1016/j.conbuildmat.2018.11.210
  54. Raj, A., Sivakumar, M., & Anjaneyulu, M. V. L. R. (2023). Use of rice husk ash-activated fillers on rutting and moisture resistance of cold mix asphalt. International Journal of Pavement Engineering, 24(2). https://doi.org/10.1080/10298436.2022.2144307
  55. Ramdhani, F., Subagio, B. S., Rahman, H., & Frazila, R. B. (2025). Performance Characteristics of Nano Palm Shell Ash (NPSA) in Asphalt Mixture. Journal of Advanced Research in Applied Sciences and Engineering Technology, 46(1), 1–14. https://doi.org/10.37934/araset.46.1.114
  56. Raza, Q.-U.-A., Bashir, M. A., Rehim, A., Sial, M. U., Ali Raza, H. M., Atif, H. M., Brito, A. F., & Geng, Y. (2021). Sugarcane Industrial Byproducts as Challenges to Environmental Safety and Their Remedies: A Review. Water, 13(24), 3495. https://doi.org/10.3390/w13243495
  57. Remisova, E. (2015). Study of mineral filler effect on asphalt mixtures properties. Bituminous Mixtures and Pavements VI - Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2015, November, 49–54. https://doi.org/10.1201/b18538-9
  58. Sarir, M., Khan, R., Alam, M., Khan, M. T., & Imran, W. (2022). Performance Evaluation of Asphalt Concrete Mixtures Using Bagasse Ash as Filler. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(2), 1553–1570. https://doi.org/10.1007/s40996-021-00641-8
  59. Sarir, M., Wu, Z., Khan, R., Alam, M., Ali, B., Laib, S., & Khan, G. (2025). Evaluation of stability and flow properties of bagasse ash as a filler in asphalt concrete for sustainable infrastructure. Advances in Science and Technology Research Journal, 19(5), 271–283. https://doi.org/10.12913/22998624/202290
  60. Shafabakhsh, G., Divandari, H., & Reza Sajadi, S. (2018). Evaluation of Optimum Content of Rice Husk Ash to Improve the Hot Asphalt Concrete Performance. International Journal of Engineering & Technology, 7(4.20), 338–346. https://doi.org/10.14419/ijet.v7i4.20.26131
  61. Shi, Y., & Reitz, R. D. (2010). Optimization of a heavy-duty compression–ignition engine fueled with diesel and gasoline-like fuels. Fuel, 89(11), 3416–3430. https://doi.org/10.1016/j.fuel.2010.02.023
  62. Silva, F. de A., Mobasher, B., Soranakom, C., & Filho, R. D. T. (2011). Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cement and Concrete Composites, 33(8), 814–823. https://doi.org/10.1016/j.cemconcomp.2011.05.003
  63. Taherkhani, H. (2016). Investigating the Effects of Nanoclay and Nylon Fibers on the Mechanical Properties of Asphalt Concrete. Civil Engineering Infrastructures Journal, 49(2), 235–249. https://doi.org/10.7508/ceij.2016.02.004
  64. Tambunan, H. (2025). PENGARUH PENGGUNAAN ABU CANGKANG KELAPA SAWIT TERHADAP STABILITAS MARSHALL PADA CAMPURAN LAPIS ASPAL BETON AC-BC (ASPHALT CONCRETE - BINDER COURSE). Nusantara Hasan Journal, 4(11). https://doi.org/https://doi.org/10.59003/nhj.v4i11.1407
  65. Tiwari, N., Rondinella, F., Satyam, N., & Baldo, N. (2023). Alternative Fillers in Asphalt Concrete Mixtures: Laboratory Investigation and Machine Learning Modeling towards Mechanical Performance Prediction. Materials, 16(2), 807. https://doi.org/10.3390/ma16020807
  66. Torres-Ortega, R., Torres-Sánchez, D., & Saba, M. (2024). Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash. ChemEngineering, 8(6), 122. https://doi.org/10.3390/chemengineering8060122
  67. Wagan, I. H., Memon, A. H., Memon, N. A., Memon, F. T., & Lashari, M. H. (2022). Rice Husk Ash (RHA) Based Concrete: Workability and Compressive Strength with Different Dosages and Curing Ages. Civil and Environmental Engineering, 12(1), 113–120. https://doi.org/10.2478/jaes-2022-0016
  68. Yadav, A. L., Sairam, V., Muruganandam, L., & Srinivasan, K. (2020). An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material. Journal of Cleaner Production, 245, 118854. https://doi.org/10.1016/j.jclepro.2019.118854
  69. Yoo, B.-S., Park, D.-W., & Vo, H. V. (2016). Evaluation of Asphalt Mixture Containing Coal Ash. Transportation Research Procedia, 14, 797–803. https://doi.org/10.1016/j.trpro.2016.05.027
  70. Zainudin, M. Z. M., Khairuddin, F. H., Ng, C. P., Che Osmi, S. K., Misnon, N. A., & Syaripuddin, M. (2016). Effect of Sugarcane Bagasse Ash as Filler in Hot Mix Asphalt. Materials Science Forum, 846, 683–689. https://doi.org/10.4028/www.scientific.net/MSF.846.683
  71. Zhang, G., Li, W., Zhang, Y., Huang, Y., Zhang, Z., & Chen, Z. (2020). Analysis and reduction of process energy consumption and thermal deformation in a micro-structure wire electrode electric discharge machining thin-wall component. Journal of Cleaner Production, 244, 118763. https://doi.org/10.1016/j.jclepro.2019.118763
  72. Zia, A., & Khan, A. A. (2021). Effectiveness of bagasse ash for performance improvement of asphalt concrete pavements. SN Applied Sciences, 3(4), 502. https://doi.org/10.1007/s42452-021-04502-x
DOI: https://doi.org/10.2478/cee-2026-0014 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Jun 20, 2025
Accepted on: Aug 5, 2025
Published on: Oct 8, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Liftasya Pratiwi, Elsa Eka Putri, Bayu Martanto Adji, Andriani Andriani, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT