References
- MOUSAVI, M., RANGARAJU, P. (2025). Freeze–Thaw Durability of 3D Printed Concrete: A Comprehensive Review of Mechanisms, Materials, and Testing Strategies. CivilEng, 6(3), 47. https://doi.org/10.3390/civileng6030047
- VAN DER PUTTEN, J. - DE VOLDER, M. - VAN DEN HEEDE, P. - DEPREZ, M. - CNUDDE, V. - DE SCHUTTER, G. - VAN TITTELBOOM, K.: Transport properties of 3D printed cementitious materials with prolonged time gap between successive layers. Cement and Concrete Research, Vol. 155, 2022, 106777, https://doi.org/10.1016/j.cemconres.2022.106777
- ZHANG, Y. – QIAO, H. – QIAN, R. – XUE, C. – FENG, Q. – SU, L. – ZHANG, Y. S. – LIU, G. – DU, H.: Relationship between water transport behaviour and interlayer voids of 3D printed concrete. Construction and Building Materials, Vol. 326, 2022, 126731, https://doi.org/10.1016/j.conbuildmat.2022.126731
- LER, K. ‐H., MA, C. -K., CHIN, C. ‐L., IZNI SYAHRIZAL IBRAHIM, KHAIRUL HAZMAN PADIL, MOHD AMINUL IZMEER AB GHAFAR, & ALVA AMI LENYA. (2024). Porosity and durability tests on 3D printing concrete: A review. Construction and Building Materials, 446, 137973-137973. https://doi.org/10.1016/j.conbuildmat.2024.137973
- SRINIVAS, D., PANDA, B., SURANENI, P., & T. G. SITHARAM. (2025). Mix design optimization of 3D-printed cementitious composites for marine applications: Impact of binder composition, accelerated carbonation, and PVA fibers on strength and durability. Construction and Building Materials, 489, 142389-142389. https://doi.org/10.1016/j.conbuildmat.2025.142389
- DU, L., ZHOU, J., LAI, J., WU, K., YIN, X., & HE, Y. (2023). Effect of pore structure on durability and mechanical performance of 3D printed concrete. Construction and Building Materials, 400, 132581-132581. https://doi.org/10.1016/j.conbuildmat.2023.132581
- NODEHI, M. - AGUAYO, F. - NODEHI, S. E. - GHOLAMPOUR, A. - OZBAKKALOGLU, T. - GENCEL, O.: Durability properties of 3D printed concrete (3DPC). Automation in Construction, Vol. 142, 2022, 104479, https://doi.org/10.1016/j.autcon.2022.104479
- VAN TITTELBOOM, K., MOHAN, M. K., SAVIJA, B., KEITA, E., MA, G., DU, H., KRUGER, J., CANEDA-MARTINEZ, L., WANG, L., BEKAERT, M., WANGLER, T., WANG, Z., MECHTCHERINE, V., ROUSSEL, N. On the micro- and meso-structure and durability of 3D printed concrete elements. Cement and Concrete Research. 2024, 185, 107649, https://doi.org/10.1016/j.cemconres.2024.107649
- ZHOU, L., GOU, M., JI, J., HOU, X., ZHANG, H. Durability and hardened properties of 3D printed concrete containing bauxite tailings. Materials Today Sustainability. 2024, 25, 100704, https://doi.org/10.1016/j.mtsust.2024.100704
- SKRIPKIŪNAS, G., TOLEGENOVA, A., RISHKO, L., AKMALAIULY, K., BALTUŠKIENĖ, D. Durability and Cracking Defects in 3D-Printed Concrete. Advances in Civil Engineering. 2025, Article ID 8592029, 8 p, https://doi.org/10.1155/adce/8592029.
- CITEK, D., HURTIG, K., KOLISKO, J, & KOTES, P., Cementitious Material Development for Additive Fabrication. MM Science Journal, 2024, https://doi.org/10.17973/MMSJ.2024_06_2024040
- ČSN EN 1015-6+A1 (72 2583): Metody zkoušení malt pro zdivo – Část 6: Stanovení objemové hmotnosti čerstvé malty. Praha: ÚNMZ / Česká agentura pro standardizaci, 2007, 16 s. (EN: Methods of test for mortar for masonry – Part 6: Determination of bulk density of fresh mortar.)
- ČSN 73 1326 (73 1326): Stanovení odolnosti povrchu cementového betonu proti působení vody a chemických rozmrazovacích látek. Praha: Česká agentura pro standardizaci, 1985. (Změna Z1: 2003.) (EN: Testing concrete – Resistance of concrete surface to de-icing chemicals.)
- ČSN 72 2452 (72 2452): Zkouška mrazuvzdornosti malty. Praha: ÚNMZ, 1968. Změna Z1: 2005. (EN: Testing of mortar — Frost resistance test.)
- ČSN EN 12390-8:2019: Zkoušení zatvrdlého betonu – Část 8: Hloubka průsaku vody pod tlakem. Praha: Česká agentura pro standardizaci (ČAS), 2019. (EN: Testing hardened concrete – Part 8: Depth of penetration of water under pressure.)
- ČSN EN 12390-12:2020: Zkoušení zatvrdlého betonu – Část 12: Stanovení potenciální odolnosti betonu proti karbonataci – Zrychlená metoda karbonatace. Praha: Česká agentura pro standardizaci (ČAS), 2020. (EN: Testing hardened concrete – Part 12: Determination of the potential carbonation resistance of concrete – Accelerated carbonation method.)
- ČSN 73 1316 (73 1316): Stanovení vlhkosti, nasákavosti a vzlínavosti betonu. Praha: ÚNMZ, 1990 (vydána 02/1990; zrušena 01.12.2003). (EN: Testing of concrete – Determination of moisture content, absorptivity and capillarity of concrete.)
- ČSN EN 12390-7:2019: Zkoušení zatvrdlého betonu – Část 7: Objemová hmotnost zatvrdlého betonu. Praha: Česká agentura pro standardizaci (ČAS), 2019. (EN: Testing hardened concrete – Part 7: Density of hardened concrete.)
- ČSN EN 206+A2:2021: Beton – Specifikace, vlastnosti, výroba a shoda. Praha: Česká agentura pro standardizaci (ČAS), 2021. (EN: Concrete – Specification, performance, production and conformity.)
- ČSN P 73 2404:2024 (ed. 2): Beton – Národní aplikační dokument k ČSN EN 206 (požadavky a postupy pro podmínky ČR). Praha: Česká agentura pro standardizaci (ČAS), 2024. (EN: Concrete – National application document to EN 206 (requirements and procedures for the Czech Republic).)
- INTERNATIONAL CODE COUNCIL (ICC): Standard for Automated Construction Technology for 3D Printing Walls — Public Draft (Public Comment Version). Washington, DC: ICC, 2025. (Table 403.7.1: Minimum Concrete Cover for Reinforcement.)
- ABDULKAREEM, O. M., ALSHAHWANY, R. B., SHLLA, R. D., AHMED, A. S., Performance of zero-slump concrete made with recycled concrete aggregate. Civil and Environmental Engineering. 2024, 20, 471–480, https://doi.org/10.2478/cee-2024-0036
- FLORES-NICOLÁS, A., FLORES-NICOLÁS, M., MENCHACA-CAMPOS, E. C., URUCHURTUCHAVARÍN, J. Study on corrosion of reinforced concrete with synthetic fibre using electrochemical noise technique. Civil and Environmental Engineering. 2025, 21(1), 271–281, https://doi.org/10.2478/cee-2025-0021
