Have a personal or library account? Click to login
Non-Destructive Testing of a Historical Vault Using Ground Penetrating Radar Method Cover

Non-Destructive Testing of a Historical Vault Using Ground Penetrating Radar Method

Open Access
|Aug 2025

References

  1. Ł. DROBIEC, “Technical Conditions of Diamond Vaults in Poland,” Civil and Environmental Engineering Reports, vol. 34, no. 3, pp. 100–119, Jul. 2024, doi: 10.59440/ceer/191066.
  2. L. AUGUSTINKOVÁ, “An Investigation of Historic Structures of Nová Horka Castle in Studénka (CR),” Civil and Environmental Engineering, vol. 19, no. 1, pp. 17–29, Jun. 2023, doi: 10.2478/cee-2023-0002.
  3. N. MOZAFARI and M. ALIMARDANI, “Climate Adaptability of Old and New House in Bushehr’s Historical Texture,” Civil and Environmental Engineering, vol. 16, no. 2, pp. 249–258, Dec. 2020, doi: 10.2478/cee-2020-0024.
  4. P. KRUŠINSKÝ, J. GOCÁL, M. HOLEŠOVÁ, and E. RACKOVÁ, “Proportional and Structural Analysis of the Historical Truss of Church of St. Bartholomew in Mladočov,” Civil and Environmental Engineering, vol. 17, no. 2, pp. 698–705, Dec. 2021, doi: 10.2478/cee-2021-0069.
  5. P. KRUŠINSKÝ, E. CAPKOVÁ, J. GOCÁL, and M. HOLEŠOVÁ, “Geometric and Static Analysis of the Historical Trusses in Roman Catholic Church of the Holy Kozma and Damian in the Abramová Village,” Civil and Environmental Engineering, vol. 11, no. 2, pp. 136–141, Dec. 2015, doi: 10.1515/cee-2015-0017.
  6. S. ŚWIĄTEK-ŻOŁYŃSKA and M. NIEDOSTATKIEWICZ, “Technological Considerations of Periodic Repair Works of Concrete Industrial Floors,” Civil and Environmental Engineering Reports, vol. 35, no. 1, pp. 50–67, Jan. 2025, doi: 10.59440/ceer/195261.
  7. F. S. SHAKER and R. M. MUSA, “THE POTENTIALS OF INTEGRATION IN THE HISTORICAL KHAN OF AL-EXANDRIA-BABYLON,” Civil and Environmental Engineering, vol. 20, no. 2, pp. 837–861, Dec. 2024, doi: 10.2478/cee-2024-0062.
  8. O. Y. JABIR, H. M. OLEIWI, and A. A. SULTAN, “RELIABILITY OF NON - DESTRUCTIVE TECHNOLOGIES IN CORROSION DETECTION OF REINFORCED CONCRETE STRUCTURES,” Civil and Environmental Engineering, vol. 18, no. 1, pp. 137–147, Jun. 2022, doi: 10.2478/cee-2022-0013.
  9. Z. T. DEGER and G. TASKIN, “A novel GPR-based prediction model for cyclic backbone curves of reinforced concrete shear walls,” Eng Struct, vol. 255, Mar. 2022, doi: 10.1016/j.engstruct.2022.113874.
  10. S. NEGRI and M. A. AIELLO, “High-resolution GPR survey for masonry wall diagnostics,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101817.
  11. D. ANGELIS, P. TSOURLOS, G. TSOKAS, G. VARGEMEZIS, G. ZACHAROPOULOU, and C. POWER, “Combined application of GPR and ERT for the assessment of a wall structure at the Heptapyrgion fortress (Thessaloniki, Greece),” J Appl Geophy, vol. 152, pp. 208–220, May 2018, doi: 10.1016/J.JAPPGEO.2018.04.003.
  12. M. RUCKA, J. LACHOWICZ, and M. ZIELIŃSKA, “GPR investigation of the strengthening system of a historic masonry tower,” J Appl Geophy, vol. 131, pp. 94–102, Aug. 2016, doi: 10.1016/J.JAPPGEO.2016.05.014.
  13. J. LACHOWICZ and M. RUCKA, “Diagnostics of pillars in St. Mary’s Church (Gdańsk, Poland) using the GPR method,” International Journal of Architectural Heritage, vol. 13, no. 8, pp. 1223–1233, Nov. 2019, doi: 10.1080/15583058.2018.1501117.
  14. M. RUCKA, E. WOJTCZAK, and M. ZIELIŃSKA, “Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics,” Measurement (Lond), vol. 154, Mar. 2020, doi: 10.1016/j.measurement.2020.107494.
  15. C. Ç. YALÇINER, Y. C. KURBAN, and E. ALTUNEL, “Research using GPR into the cause of cracks and depressions in the floor of the gallery of Hagia Sophia Museum,” Constr Build Mater, vol. 139, pp. 458–466, May 2017, doi: 10.1016/j.conbuildmat.2017.02.036.
  16. D. BEBEN, W. ANIGACZ, and J. UKLEJA, “Diagnosis of bedrock course and retaining wall using GPR,” NDT & E International, vol. 59, pp. 77–85, Oct. 2013, doi: 10.1016/J.NDTEINT.2013.05.006.
  17. J. HUGENSCHMIDT and A. KALOGEROPOULOS, “The inspection of retaining walls using GPR,” J Appl Geophy, vol. 67, no. 4, pp. 335–344, Apr. 2009, doi: 10.1016/J.JAPPGEO.2008.09.001.
  18. M. ZIELIŃSKA, M. RUCKA, E. WOJTCZAK, T. CIBOROWSKI, and M. STEFFENS, “Nondestructive Diagnostics of the Floor in the Gdańsk Crane Using Ground Penetrating Radar,” Wiadomosci Konserwatorskie, vol. 2023, no. 76, pp. 129–140, 2023, doi: 10.48234/WK76CRANE.
  19. Ł. DROBIEC and S. KOZŁOWSKA, “Wstępne nieniszczące badania posadzki i ścian w PałacuWielkich Mistrzów na zamku średnim w Malborku,” Przegląd Budowlany, vol. 95, no. 1–2, pp. 60–66, Feb. 2024, doi: 10.5604/01.3001.0054.3607.
  20. P. FRĄCKIEWICZ, K. RASZCZUK, and J. JASIEŃKO, “Identification of Alternations in the Structure of Historical Masonry Walls Using the GPR Method Accompanied with Architectural Survey in the Former Piast Gymnasium in Brzeg,” Civil and Environmental Engineering Reports, vol. 34, no. 4, pp. 32–42, Oct. 2024, doi: 10.59440/ceer/191566.
  21. J. DROBIEC and B. NOWOGOŃSKA, “Non-destructive Testing of Wooden Elements in Historic Buildings - An Example of Testing a 19th Century Roof Truss Structure,” Civil and Environmental Engineering Reports, vol. 34, no. 3, pp. 154–164, Jul. 2024, doi: 10.59440/ceer/190825.
  22. N. IŞIK, F. M. HALIFEOĞLU, and S. İPEK, “Detecting the ground-dependent structural damages in a historic mosque by employing GPR,” J Appl Geophy, vol. 199, p. 104606, Apr. 2022, doi: 10.1016/J.JAPPGEO.2022.104606.
  23. J. LACHOWICZ and M. RUCKA, “3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures,” Archives of Civil and Mechanical Engineering, vol. 18, no. 4, pp. 1228–1240, Sep. 2018, doi: 10.1016/J.ACME.2018.01.010.
  24. M. RUCKA, E. WOJTCZAK, and M. ZIELIŃSKA, “Integrated application of GPR and ultrasonic testing in the diagnostics of a historical floor,” Materials, vol. 13, no. 11, Jun. 2020, doi: 10.3390/ma13112547.
  25. C. BISCARINI, I. CATAPANO, N. CAVALAGLI, G. LUDENO, F. A. PEPE, and F. UBERTINI, “UAV photogrammetry, infrared thermography and GPR for enhancing structural and material degradation evaluation of the Roman masonry bridge of Ponte Lucano in Italy,” NDT & E International, vol. 115, p. 102287, Oct. 2020, doi: 10.1016/J.NDTEINT.2020.102287.
  26. S. POZZER, Z. OMIDI, A. EL REFAI, F. LÓPEZ, C. IBARRA-CASTANEDO, and X. MALDAGUE, “Passive infrared thermography for subsurface delamination detection in concrete infrastructure: Capabilities,” Constr Build Mater, vol. 419, Mar. 2024, doi: 10.1016/j.conbuildmat.2024.135542.
  27. A. RUSSOLILLO et al., “Unveiling a hidden fortification system at ‘Faraglioni’ Middle Bronze Age Village of Ustica Island (Palermo, Italy) through ERT and GPR prospections,” J Appl Geophy, vol. 220, Jan. 2024, doi: 10.1016/j.jappgeo.2023.105272.
  28. J. SZCZEPAŃSKI, “Architecture of the Gdańsk University of Technology Ensemble 1904-2018” (Architektura zespołu Politechniki Gdańskiej 1904-2018), pp. 1-224, 2019.
  29. S. NIEWITECKI, “The history of a one beam” (Historia jednej belki), Pismo PG, vol. 4, pp. 40-43.
DOI: https://doi.org/10.2478/cee-2025-0090 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 1222 - 1231
Published on: Aug 8, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Tomasz Ciborowski, Magdalena Rucka, Paweł Wałdowski, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.