Have a personal or library account? Click to login
Taguchi-Based Optimization of Cellulose Nanocrystal and Fly Ash Dosage in Concrete for Enhanced Strength Cover

Taguchi-Based Optimization of Cellulose Nanocrystal and Fly Ash Dosage in Concrete for Enhanced Strength

Open Access
|Jul 2025

References

  1. AHMED, A.: Assessing the effects of supplementary cementitious materials on concrete properties:a review, Discover Civil Engineering, 2024, vol. 1, no. 1, pp. 145 doi: 10.1007/s44290-024-00154-z.
  2. PACEWSKA, B. - WILIŃSKA, I.: Usage of supplementary cementitious materials: advantages and limitations: Part I. C–S–H, C–A–S–H and other products formed in different binding mixtures, Journal of Thermal Analysis and Calorimetry, 2020, vol. 142, no. 1, pp. 371–393 doi: 10.1007/s10973-020-09907-1.
  3. SALEEM, H. - ZAIDI, S. J. - ALNUAIMI, N. A.: Recent Advancements in the Nanomaterial Application in Concrete and Its Ecological Impact, Materials, 2021, vol. 14, no. 21, pp. 6387 doi: 10.3390/ma14216387.
  4. ABDALLA, J. A. et al.: Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete, Cleaner Materials, 2022, vol. 4, pp. 100061 doi: 10.1016/j.clema.2022.100061.
  5. BARAGWIHA, M. B. et al.: Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement, Materials, 2023, vol. 16, no. 19, pp. 6514 doi: 10.3390/ma16196514.
  6. FRANCO-LUJÁN, V. A. - MONTEJO-ALVARO, F. - RAMÍREZ-ARELLANES, S. - CRUZ-MARTÍNEZ, H. - MEDINA, D. I.: Nanomaterial-Reinforced Portland-Cement-Based Materials: A Review, Nanomaterials, 2023, vol. 13, no. 8, pp. 1383 doi: 10.3390/nano13081383.
  7. GOEL, G. - SACHDEVA, P. - CHAUDHARY, A. K. - SINGH, Y.: The use of nanomaterials in concrete: A review, Materials Today: Proceedings, 2022, vol. 69, pp. 365–371 doi: 10.1016/j.matpr.2022.09.051.
  8. DU, X. et al.: Modification mechanism of combined nanomaterials on high performance concrete and optimization of nanomaterial content, Journal of Building Engineering, 2023, vol. 64, pp. 105648 doi: 10.1016/j.jobe.2022.105648.
  9. METAXA, Z. S. et al.: Nanomaterials in Cementitious Composites: An Update, Molecules, 2021, vol. 26, no. 5, pp. 1430 doi: 10.3390/molecules26051430.
  10. CHAKRABORTY, S. - JO, B. W. - YOON, Y.- S.: Development of nano cement concrete by top-down and bottom-up nanotechnology concept, Smart Nanoconcretes and Cement-Based Materials, 2020, pp. 183–213 doi: 10.1016/B978-0-12-817854-6.00007-6.
  11. NORHASRI, M. S. M. - HAMIDAH, M. S. - FADZIL, A. M.: Applications of using nano material in concrete: A review, Construction and Building Materials, 2017, vol. 133, pp. 91–97 doi: 10.1016/j.conbuildmat.2016.12.005.
  12. SANCHEZ, F. - SOBOLEV, K.: Nanotechnology in concrete – A review, Construction and Building Materials, 2010, vol. 24, no. 11, pp. 2060–2071 doi: 10.1016/j.conbuildmat.2010.03.014.
  13. GUO, A. - SUN, Z. - SATHITSUKSANOH, N. - FENG, H.: A Review on the Application of Nanocellulose in Cementitious Materials, Nanomaterials, 2020, vol. 10, no. 12, pp. 2476 doi: 10.3390/nano10122476.
  14. GHAHARI, S. - ASSI, L. N. - ALSALMAN, A. - ALYAMAÇ, K. E.: Fracture Properties Evaluation of Cellulose Nanocrystals Cement Paste, Materials, 2020, vol. 13, no. 11, pp. 2507 doi: 10.3390/ma13112507.
  15. XU, X. et al.: Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, ACS Applied Materials & Interfaces, 2013, vol. 5, no. 8, pp. 2999–3009 doi: 10.1021/am302624t.
  16. JORDAN, J. H. - EASSON, M. W. - CONDON, B. D.: Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge, Nanomaterials, 2019, vol. 9, no. 9, pp. 1232 doi: 10.3390/nano9091232.
  17. FLORES, J. - KAMALI, M. - GHAHREMANINEZHAD, A.: An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal, Materials, 2017, vol. 10, no. 5, pp. 498 doi: 10.3390/ma10050498.
  18. WEI, L. et al.: Chemical modification of nanocellulose with canola oil fatty acid methyl ester, Carbohydrate Polymers, 2017, vol. 169, pp. 108–116 doi: 10.1016/j.carbpol.2017.04.008.
  19. ZHENG, D. - YANG, H. - FENG, W. - FANG, Y. - CUI, H.: Modification mechanism of cellulose nanocrystals in cement, Cement and Concrete Research, 2023, vol. 165, pp. 107089 doi: 10.1016/j.cemconres.2023.107089.
  20. LIU, Q. - PENG, Y. - LIANG, L. - DONG, X. - LI, H.: Effect of Cellulose Nanocrystals on the Properties of Cement Paste, Journal of Nanomaterials, 2019, vol. 2019, pp. 1–7 doi: 10.1155/2019/8318260.
  21. FILIPAK VANIN, D. V. et al.: Cement pastes modified by cellulose nanocrystals: A dynamic moduli evolution assessment by the Impulse Excitation Technique, Materials Chemistry and Physics, 2020, vol. 239, pp. 122038 doi: 10.1016/j.matchemphys.2019.122038.
  22. BAI, S. - GUAN, X. - LI, H. - OU, J.: Effect of nanocellulose on early hydration and microstructure of cement paste under low and high water-cement ratios, Construction and Building Materials, 2023, vol. 409, pp. 133963 doi: 10.1016/j.conbuildmat.2023.133963.
  23. FIRDISSA, B. - DEGEFA, S. - MULUGETA, E. - SITHOLE, D.: Enhancing cement mechanical properties with cellulose nanocrystals as supplementary cementitious materials, Discover Civil Engineering, 2025, vol. 2, no. 1, pp. 15 doi: 10.1007/s44290-025-00171-6.
  24. BARNAT-HUNEK, D. - SZYMAŃSKA-CHARGOT, M. - JAROSZ-HADAM, M. - ŁAGÓD, G.: Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete, Construction and Building Materials, 2019, vol. 223, pp. 1–11 doi: 10.1016/j.conbuildmat.2019.06.145.
  25. FU, T. - MONTES, F. - SURANENI, P. - YOUNGBLOOD, J. - WEISS, J.: The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes, Polymers, 2017, vol. 9, no. 12, pp. 424 doi: 10.3390/polym9090424.
  26. WANG, J. et al.: Synergistic effects of nano-silica and fly ash on properties of cement-based composites, Construction and Building Materials, 2020, vol. 262, pp. 120737 doi: 10.1016/j.conbuildmat.2020.120737.
  27. SARADAR, A. et al.: Investigating the properties and microstructure of high-performance cement composites with nano-silica, silica fume, and ultra-fine TiO2, Innovative Infrastructure Solutions, 2024, vol. 9, no. 4, pp. 84 doi: 10.1007/s41062-024-01407-7.
  28. VIJAYAN, D. S. - DEVARAJAN, P. - SIVASURIYAN, A.: A review on eminent application and performance of nano based silica and silica fume in the cement concrete, Sustainable Energy Technologies and Assessments, 2023, vol. 56, pp. 103105 doi: 10.1016/j.seta.2023.103105.
  29. FENG, H. et al.: Mechanical and shrinkage properties of cellulose nanocrystal modified alkali-activated fly ash/slag pastes, Cement and Concrete Composites, 2024, vol. 154, pp. 105753 doi: 10.1016/j.cemconcomp.2024.105753.
  30. ZHU, S. et al.: Study on the early performance of alkali-activated slag-fly ash binders incorporating cellulose nanocrystals, Case Studies in Construction Materials, 2025, vol. 22, pp. e04498 doi: 10.1016/j.cscm.2025.e04498.
  31. SINGH, L. P. et al.: Durability studies of nano-engineered fly ash concrete, Construction and Building Materials, 2019, vol. 194, pp. 205–215 doi: 10.1016/j.conbuildmat.2018.11.022.
  32. MARTINS, T. - TORGAL, F. P. - MIRALDO, S. - AGUIAR, J. B. - CARLOS, J.: An experimental investigation on nano-TiO2 and fly ash based high performance concrete, 2016.
  33. RUMMAN, R. - KAMAL, M. R. - MANZUR, T. - NOOR, M. A.: Optimum proportion of fly ash or slag for resisting concrete deterioration due to carbonation and chloride ingress, Structures, 2022, vol. 41, pp. 287–305 doi: 10.1016/j.istruc.2022.04.087.
  34. GAO, Y. - HE, B. - LI, Y. - TANG, J. - QU, L.: Effects of nano-particles on improvement in wear resistance and drying shrinkage of road fly ash concrete, Construction and Building Materials, 2017, vol. 151, pp. 228–235 doi: 10.1016/j.conbuildmat.2017.06.080.
  35. WIJAYA, M. F. - ISMANTI, S. - SATYARNO, I.: Physical and Mechanical Properties of Fly Ash-Bottom Ash Geopolymer Mixtures on Expansive Clay Soil Stabilization as a Subgrade Material, Civil and Environmental Engineering, 2024, vol. 20, no. 2, pp. 890–904 doi: 10.2478/cee-2024-0065.
  36. CHINDAPRASIRT, P. - KAMPALA, A. - DAPROM, P. - JITSANGIAM, P. - HORPIBULSUK, S.: Role of Fly Ash on Strength Properties of Rejuvenated Soil Cement for Pavement Materials, Civil and Environmental Engineering, 2021, vol. 17, no. 2, pp. 583–596 doi: 10.2478/cee-2021-0059.
  37. REDDY, M. L. - LINGESHWARAN, N.: Experimental Investigation on Performance of Hollow Brick with Fly Ash, Cement and Sand, Civil and Environmental Engineering, 2024, vol. 20, no. 1, pp. 461–470 doi: 10.2478/cee-2024-0035.
  38. XU, G. - SHI, X.: Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review, Resources, Conservation and Recycling, 2018, vol. 136, pp. 95–109 doi: 10.1016/j.resconrec.2018.04.010.
  39. REDDY, A. N. - REDDY, P. N. - KAVYATEJA, B. V. - REDDY, G. G. K.: Influence of nanomaterial on high-volume fly ash concrete: a statistical approach, Innovative Infrastructure Solutions, 2020, vol. 5, no. 3, pp. 88 doi: 10.1007/s41062-020-00340-9.
  40. IS 456 (2000): Plain and Reinforced Concrete - Code of Practice.
  41. IS 3812-1 (2033): Specification for Pulverized Fuel Ash, Part 1: For Use as Pozzolana in Cement, Cement Mortar and Concrete.
  42. IS-269-2015 - ordinary portland cement specification.
  43. CAO, Y. et al.: The influence of cellulose nanocrystals on the microstructure of cement paste, Cement and Concrete Composites, 2016, vol. 74, pp. 164–173 doi: 10.1016/j.cemconcomp.2016.09.008.
  44. IS 383-2016 Course and fine aggregate for concrete- specification.
  45. PRUSTY - RAJESWARI - MUKHARJEE - BIBHUTI B. - BARAI - SUDHIRKUMAR, V: Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach, Advances in concrete construction, 2015, vol. 3, no. 4, pp. 253–268 doi: 10.12989/ACC.2015.3.4.253.
  46. SOLTANI, A. - TARIGHAT, A. - ROSTAMI, R. - TAVAKOLI, D. - MORADI, A.: Investigation of mechanical properties of concrete with clinoptilolite and silica fume using Taguchi method, Innovative Infrastructure Solutions, 2024, vol. 9, no. 3, pp. 77 doi: 10.1007/s41062-024-01362-3.
  47. JOSHAGHANI, A. - RAMEZANIANPOUR, A. A. - ATAEI, O. - GOLROO, A.: Optimizing pervious concrete pavement mixture design by using the Taguchi method, Construction and Building Materials, 2015, vol. 101, pp. 317–325 doi: 10.1016/j.conbuildmat.2015.10.094.
  48. IS 10262-2019- Concrete mix design proportioning- Guidelines.
  49. CAO, Y. - ZAVATERRI, P. - YOUNGBLOOD, J. - MOON, R. - WEISS, J.: The influence of cellulose nanocrystal additions on the performance of cement paste, Cement and Concrete Composites, 2015, vol. 56, pp. 73–83 doi: 10.1016/j.cemconcomp.2014.11.008.
  50. YANG, X. et al.: A preliminary investigation of incorporating cellulose nanocrystals into engineered cementitious composites, Frontiers in Materials, 2024, vol. 11, pp. 1443517 doi: 10.3389/fmats.2024.1443517.
  51. JARABO, R. - FUENTE, E. - GARCÍA CALVO, J. L. - CARBALLOSA, P. - NEGRO, C.: Nanocrystalline Cellulose to Reduce Superplasticizer Demand in 3D Printing of Cementitious Materials, Materials, 2024, vol. 17, no. 17, pp. 4247 doi: 10.3390/ma17174247.
  52. RAGHUNATH, S. - HOQUE, M. - FOSTER, E. J.: On the Roles of Cellulose Nanocrystals in Fiber Cement: Implications for Rheology, Hydration Kinetics, and Mechanical Properties, ACS Sustainable Chemistry & Engineering, 2023, vol. 11, no. 29, pp. 10727–10736 doi: 10.1021/acssuschemeng.3c01392.
DOI: https://doi.org/10.2478/cee-2025-0081 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 1083 - 1096
Published on: Jul 2, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Varsha More, Surekha Bhalchandra, Sanjay Jamkar, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.