References
- LIU, J. C. - HOSSAIN, M. U. - XUAN, D. - Ali, H. A. - Ng, S. T. - Ye, H. (2023): Mechanical and durability performance of sustainable concretes containing conventional and emerging supplementary cementitious materials. Developments in the Built Environment, 15, 100197. https://doi.org/10.1016/j.dibe.2023.100197.
- KANAGARAJ, B. - PRIYANKA, R. - ANAND, N. - KIRAN, T. - ANDRUSHIA, A. D. - LUBLOY, E. (2024): A sustainable solution for mitigating environmental corrosion in the construction sector and its socio-economic concern. Case Studies in Construction Materials, 20, e03089. https://doi.org/10.1016/j.cscm.2024.e03089.
- AKINWALE, A. E. - ADAMS, F. V. - IKOTUN, B. D. (2023): Effects of supplementary cementitious materials on concrete reinforcement corrosion in magnesium sulphate. Materials Today: Proceedings, 86(3), 82–87. https://doi.org/10.1016/j.matpr.2023.03.122.
- LIU, J. - LIU, J. - HUANG, Z. - ZHU, J. - LIU, W. - ZHANG, W. (2020): Effect of fly ash as cement replacement on chloride diffusion, chloride binding capacity, and micro-properties of concrete in a water soaking environment. Applied Sciences, 10(18), 6271. https://doi.org/10.3390/app10186271.
- TAHWIA, A. M. - FOUDA, R. M. - ELRAHMAN, M. A. - YOUSSF, O. (2023): Long-term performance of concrete made with different types of cement under severe sulfate exposure. Materials, 16(1), 240. https://doi.org/10.3390/ma16010240.
- YUAN, Y. - NIU, K. - TIAN, B. - LI, L. - JI, J. - FENG, Y. (2023): Effect of metakaolin on the microstructural and chloride ion transport properties of concrete in ocean wave splashing zones. Materials, 16(1), 7. https://doi.org/10.3390/ma16010007.
- LIANG, Q., HUANG, X., Zhang, L., & Yang, H. (2024). A review on research progress of corrosion resistance of alkali-activated slag cement concrete. Materials, 17(20), 5065. https://doi.org/10.3390/ma17205065.
- SUBPA-ASA, P. - NITO, N. - FUJIWARA, S. - DATE, S. (2022): Evaluation of the prediction and durability on the chloride penetration in cementitious materials with blast furnace slag as cement addition. Construction Materials, 2(1), 53–69. https://doi.org/10.3390/constrmater2010005.
- SILVA, Y. F. - DELVASTO, S. (2021): Sulfate attack resistance of self-compacting concrete with residue of masonry. Construction and Building Materials, 268, 121095.
- KARTHIK, P. E. - GOPAL, V. (2022): Carbonation resistance of sustainable concrete with SCMs. Construction and Building Materials, 327, 126998. https://doi.org/10.1016/j.conbuildmat.2020.121095.
- CHEN, C. - LU, C. - WEI, S. - GUO, Z. - ZHOU, Q. - WANG, W. (2023): Synergetic effect of fly ash and ground-granulated blast slag on improving the chloride permeability and freeze–thaw resistance of recycled aggregate concrete. Construction and Building Materials, 365, 130015. https://doi.org/10.1016/j.conbuildmat.2022.130015.
- BEZERRA, W. V. D. - MEIRA, G. R. - FREITAS, M. S. (2024): Combined effect of supplementary cementitious materials and hot-dipped galvanized steel on performance of reinforced concretes subjected to chloride-induced corrosion. Construction and Building Materials, 441, 137521. https://doi.org/10.1016/j.conbuildmat.2024.137521.
- HUSEIEN, G. F. - JOUDAH, Z. H. - KHALID, N. H. A. - SAM, A. R. M. - TAHIR, M. M. - LIM, N. H. A. S. - ALYOUSEF, R. - MIRZA, J. (2021): Durability performance of modified concrete incorporating fly ash and effective microorganism. Construction and Building Materials, 267, 120947. https://doi.org/10.1016/j.conbuildmat.2020.120947.
- LIU, J. - WU, L. - ZHU, J. - JIA, H. - LIU, L. - ZHANG, S. - YANG, C. - CHEN, Z. - SHI, C. (2025): Effect of silica fume on corrosion resistance of cement-based materials under carbonic acid water environment. Cement and Concrete Composites, 157, 105949. https://doi.org/10.1016/j.cemconcomp.2025.105949.
- BHOJARAJU, C. - MOUSAVI, S. S. - OUELLET-PLAMONDON, C. M. (2023): Influence of GGBFS on corrosion resistance of cementitious composites containing graphene and graphene oxide. Cement and Concrete Composites, 135, 104836. https://doi.org/10.1016/j.cemconcomp.2022.104836.
- CHANG, H. - WANG, X. - WANG, Y. - LI, C. - GUO, Z. - FAN, S., ZHANG, H. & FENG, P. (2023): Chloride binding behavior of cement paste influenced by metakaolin dosage and chloride concentration. Cement and Concrete Composites, 135, 104821. https://doi.org/10.1016/j.cemconcomp.2022.104821.
- SIRIVIVATNANON, V. - XUE, C. - KHATRI, R. (2023): Long-term reinforcement corrosion in low carbon concrete with a high volume of SCMs exposed to NaCl solutions and field marine environment. Construction and Building Materials, 393, 132071.
- NAYAK, D. K. - ABHILASH, P. P. - SINGH, R. - KUMAR, R. - KUMAR, V. (2022): Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143.
- ASTM C188-22. (2022). Standard Test Method for Density of Hydraulic Cement. ASTM International.
- ASTM C204-21. (2021). Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International.
- ASTM C191-20. (2020). Standard Test Methods for Time of Setting of Hydraulic Cement. ASTM International.
- ASTM C109-21. (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International.
- ASTM C114-22. (2022). Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International.
- ASTM C430-20. (2020). Standard Test Method for Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve. ASTM International.
- ASTM C311-21. (2021). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans. ASTM International.
- ASTM C618-21. (2021). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan. ASTM International.
- ASTM C1240-22. (2022). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International.
- ASTM C204-24. (2021). Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International.
- ASTM C989-21. (2021). Standard Specification for Ground Granulated Blast-Furnace Slag. ASTM International.
- ASTM D516-21. (2021). Standard Test Method for Sulfate Ion in Water. ASTM International.
- KANG, C. & KIM, T. (2020): Investigation of the effects of magnesium-sulfate as slag activator. Materials, 13(2), 305. https://doi.org/10.3390/ma13020305.
- ASTM C1012-22. (2022). Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM International.
- ASTM D512-20. (2020). Standard Test Methods for Chloride Ion in Water. ASTM International.
- ASTM A615/A615M-24. (2024). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International.
- ASTM C143-21. (2021). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International.
- ASTM C39-22. (2022). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International.
- ASTM C642-21. (2021). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International.
- ASTM C1585-22. (2022). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International.
- ASTM C1202-22. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International.
- ASTM C1012-21. (2021). Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM International.
- ASTM C1556-21. (2021). Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures. ASTM International.
- ASTM C876-22. (2022). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International.
- NICOLÁS, A. F. - MENCHACA CAMPOS, E. C. - FLORES NICOLÁS, M. - MARTÍNEZ GONZÁLEZ, J. J. - GONZÁLEZ NORIEGA, O. A. - URUCHURTU CHAVARÍN, J. (2024): Influence of recycled high-density polyethylene fibers on the mechanical and electrochemical properties of reinforced concrete. Fibers, 12(3), 24. https://doi.org/10.3390/fib12030024.
- YAN, Y. Y. - ELBOUJDAINI, M. (2018): Reliability and maintainability of in-service pipelines: Corrosion mechanism. In Trends in Oil and Gas Corrosion Research and Technologies (pp. 1–48). https://doi.org/10.1016/B978-0-12-813578-5.00001-9.
- CHU, S. H. - KWAN, A. K. H. (2019): Co-addition of metakaolin and silica fume in mortar: Effects and advantages. Construction and Building Materials, 197, 716–724. https://doi.org/10.1016/j.conbuildmat.2018.11.244.
- MIAH, M. J. - HUAPING, R. - PAUL, S. C. - BABAFEMI, A. J. - LI, Y. (2023): Long-term strength and durability performance of eco-friendly concrete with supplementary cementitious materials. Innovative Infrastructure Solutions, 8, 255. https://doi.org/10.1007/s41062-023-01225-3.
- DERROUICHE, Y. - ACHOURA, D. - SALIBA, J. - CASSAGNABÈRE, F. (2025): Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development. Scientific African, 27, e02574. https://doi.org/10.1016/j.sciaf.2025.e02574.
- MOHSEN, M. O. - ABURUMMAN, M. O. - AL DISEET, M. M. - TAHA, R. - ABDEL-JABER, M. - SENOUCI, A. - TAQA, A. A. (2023): Fly ash and natural pozzolana impacts on sustainable concrete permeability and mechanical properties. Buildings, 13(8), 1927. https://doi.org/10.3390/buildings13081927.
- MOHSENI, E. - TANG, W. - CUI, H. (2017): Chloride diffusion and acid resistance of concrete containing zeolite and tuff as partial replacements of cement and sand. Materials, 10(4), 372. https://doi.org/10.3390/ma10040372.
- MEHTA, P. - MONTEIRO, P. (2020): Concrete: Microstructure, properties, and materials (4th ed.). McGraw-Hill.
- ABED, J. M. - AL-GBURI, M. - ALMSSAD, A. (2024): Evaluation of physical and mechanical properties of modified cement-lime mortar containing recycled granite powder waste as a partial fine aggregate replacement. Applied Sciences, 14(22), 10146. https://doi.org/10.3390/app142210146.
- ABED, D. M. - ABED, J. M. - AL-SAFFAR, Z. H. (2023): Review article on the use of lime mortar in heritage buildings. NTU Journal of Engineering and Technology, 2(3), 43–55. https://doi.org/10.56286/ntujet.v2i3.700.
- CHEN, J. - JIA, J. - ZHU, M. (2025): Role of supplementary cementitious materials on chloride binding behaviors and corrosion resistance in marine environment. Construction and Building Materials, 458, 139724. https://doi.org/10.1016/j.conbuildmat.2024.139724.
- ALI, L. H. - ATEMIMI, Y. K. (2025): Study the effect of waste materials ash (date seed ash) on expansive soil. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0016.
- HARB, N. - DILMI, H. - BEZZAZI, B. - HAMITOUCHE, K. (2023): Effect of alternating hybridisation of fibres on the physico-mechanical behaviour of composite materials. Civil and Environmental Engineering, 19(1), 406–413. https://doi.org/10.2478/cee-2023-0036.
- ABED, J. M. - AL-GBURI, M. - ALMSSAD, A. (2024): Evaluation of physical and mechanical properties of modified cement-lime mortar containing recycled granite powder waste as a partial fine aggregate replacement. Applied Sciences, 14, 10146. https://doi.org/10.3390/app142210146.
