Have a personal or library account? Click to login
Effect of Supplementary Cementitious Materials on Corrosion Resistance of Reinforced Concrete Cover

Effect of Supplementary Cementitious Materials on Corrosion Resistance of Reinforced Concrete

Open Access
|Jul 2025

References

  1. LIU, J. C. - HOSSAIN, M. U. - XUAN, D. - Ali, H. A. - Ng, S. T. - Ye, H. (2023): Mechanical and durability performance of sustainable concretes containing conventional and emerging supplementary cementitious materials. Developments in the Built Environment, 15, 100197. https://doi.org/10.1016/j.dibe.2023.100197.
  2. KANAGARAJ, B. - PRIYANKA, R. - ANAND, N. - KIRAN, T. - ANDRUSHIA, A. D. - LUBLOY, E. (2024): A sustainable solution for mitigating environmental corrosion in the construction sector and its socio-economic concern. Case Studies in Construction Materials, 20, e03089. https://doi.org/10.1016/j.cscm.2024.e03089.
  3. AKINWALE, A. E. - ADAMS, F. V. - IKOTUN, B. D. (2023): Effects of supplementary cementitious materials on concrete reinforcement corrosion in magnesium sulphate. Materials Today: Proceedings, 86(3), 82–87. https://doi.org/10.1016/j.matpr.2023.03.122.
  4. LIU, J. - LIU, J. - HUANG, Z. - ZHU, J. - LIU, W. - ZHANG, W. (2020): Effect of fly ash as cement replacement on chloride diffusion, chloride binding capacity, and micro-properties of concrete in a water soaking environment. Applied Sciences, 10(18), 6271. https://doi.org/10.3390/app10186271.
  5. TAHWIA, A. M. - FOUDA, R. M. - ELRAHMAN, M. A. - YOUSSF, O. (2023): Long-term performance of concrete made with different types of cement under severe sulfate exposure. Materials, 16(1), 240. https://doi.org/10.3390/ma16010240.
  6. YUAN, Y. - NIU, K. - TIAN, B. - LI, L. - JI, J. - FENG, Y. (2023): Effect of metakaolin on the microstructural and chloride ion transport properties of concrete in ocean wave splashing zones. Materials, 16(1), 7. https://doi.org/10.3390/ma16010007.
  7. LIANG, Q., HUANG, X., Zhang, L., & Yang, H. (2024). A review on research progress of corrosion resistance of alkali-activated slag cement concrete. Materials, 17(20), 5065. https://doi.org/10.3390/ma17205065.
  8. SUBPA-ASA, P. - NITO, N. - FUJIWARA, S. - DATE, S. (2022): Evaluation of the prediction and durability on the chloride penetration in cementitious materials with blast furnace slag as cement addition. Construction Materials, 2(1), 53–69. https://doi.org/10.3390/constrmater2010005.
  9. SILVA, Y. F. - DELVASTO, S. (2021): Sulfate attack resistance of self-compacting concrete with residue of masonry. Construction and Building Materials, 268, 121095.
  10. KARTHIK, P. E. - GOPAL, V. (2022): Carbonation resistance of sustainable concrete with SCMs. Construction and Building Materials, 327, 126998. https://doi.org/10.1016/j.conbuildmat.2020.121095.
  11. CHEN, C. - LU, C. - WEI, S. - GUO, Z. - ZHOU, Q. - WANG, W. (2023): Synergetic effect of fly ash and ground-granulated blast slag on improving the chloride permeability and freeze–thaw resistance of recycled aggregate concrete. Construction and Building Materials, 365, 130015. https://doi.org/10.1016/j.conbuildmat.2022.130015.
  12. BEZERRA, W. V. D. - MEIRA, G. R. - FREITAS, M. S. (2024): Combined effect of supplementary cementitious materials and hot-dipped galvanized steel on performance of reinforced concretes subjected to chloride-induced corrosion. Construction and Building Materials, 441, 137521. https://doi.org/10.1016/j.conbuildmat.2024.137521.
  13. HUSEIEN, G. F. - JOUDAH, Z. H. - KHALID, N. H. A. - SAM, A. R. M. - TAHIR, M. M. - LIM, N. H. A. S. - ALYOUSEF, R. - MIRZA, J. (2021): Durability performance of modified concrete incorporating fly ash and effective microorganism. Construction and Building Materials, 267, 120947. https://doi.org/10.1016/j.conbuildmat.2020.120947.
  14. LIU, J. - WU, L. - ZHU, J. - JIA, H. - LIU, L. - ZHANG, S. - YANG, C. - CHEN, Z. - SHI, C. (2025): Effect of silica fume on corrosion resistance of cement-based materials under carbonic acid water environment. Cement and Concrete Composites, 157, 105949. https://doi.org/10.1016/j.cemconcomp.2025.105949.
  15. BHOJARAJU, C. - MOUSAVI, S. S. - OUELLET-PLAMONDON, C. M. (2023): Influence of GGBFS on corrosion resistance of cementitious composites containing graphene and graphene oxide. Cement and Concrete Composites, 135, 104836. https://doi.org/10.1016/j.cemconcomp.2022.104836.
  16. CHANG, H. - WANG, X. - WANG, Y. - LI, C. - GUO, Z. - FAN, S., ZHANG, H. & FENG, P. (2023): Chloride binding behavior of cement paste influenced by metakaolin dosage and chloride concentration. Cement and Concrete Composites, 135, 104821. https://doi.org/10.1016/j.cemconcomp.2022.104821.
  17. SIRIVIVATNANON, V. - XUE, C. - KHATRI, R. (2023): Long-term reinforcement corrosion in low carbon concrete with a high volume of SCMs exposed to NaCl solutions and field marine environment. Construction and Building Materials, 393, 132071.
  18. NAYAK, D. K. - ABHILASH, P. P. - SINGH, R. - KUMAR, R. - KUMAR, V. (2022): Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143.
  19. ASTM C188-22. (2022). Standard Test Method for Density of Hydraulic Cement. ASTM International.
  20. ASTM C204-21. (2021). Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International.
  21. ASTM C191-20. (2020). Standard Test Methods for Time of Setting of Hydraulic Cement. ASTM International.
  22. ASTM C109-21. (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International.
  23. ASTM C114-22. (2022). Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International.
  24. ASTM C430-20. (2020). Standard Test Method for Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve. ASTM International.
  25. ASTM C311-21. (2021). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans. ASTM International.
  26. ASTM C618-21. (2021). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan. ASTM International.
  27. ASTM C1240-22. (2022). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International.
  28. ASTM C204-24. (2021). Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International.
  29. ASTM C989-21. (2021). Standard Specification for Ground Granulated Blast-Furnace Slag. ASTM International.
  30. ASTM D516-21. (2021). Standard Test Method for Sulfate Ion in Water. ASTM International.
  31. KANG, C. & KIM, T. (2020): Investigation of the effects of magnesium-sulfate as slag activator. Materials, 13(2), 305. https://doi.org/10.3390/ma13020305.
  32. ASTM C1012-22. (2022). Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM International.
  33. ASTM D512-20. (2020). Standard Test Methods for Chloride Ion in Water. ASTM International.
  34. ASTM A615/A615M-24. (2024). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International.
  35. ASTM C143-21. (2021). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International.
  36. ASTM C39-22. (2022). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International.
  37. ASTM C642-21. (2021). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International.
  38. ASTM C1585-22. (2022). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International.
  39. ASTM C1202-22. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International.
  40. ASTM C1012-21. (2021). Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM International.
  41. ASTM C1556-21. (2021). Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures. ASTM International.
  42. ASTM C876-22. (2022). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International.
  43. NICOLÁS, A. F. - MENCHACA CAMPOS, E. C. - FLORES NICOLÁS, M. - MARTÍNEZ GONZÁLEZ, J. J. - GONZÁLEZ NORIEGA, O. A. - URUCHURTU CHAVARÍN, J. (2024): Influence of recycled high-density polyethylene fibers on the mechanical and electrochemical properties of reinforced concrete. Fibers, 12(3), 24. https://doi.org/10.3390/fib12030024.
  44. YAN, Y. Y. - ELBOUJDAINI, M. (2018): Reliability and maintainability of in-service pipelines: Corrosion mechanism. In Trends in Oil and Gas Corrosion Research and Technologies (pp. 1–48). https://doi.org/10.1016/B978-0-12-813578-5.00001-9.
  45. CHU, S. H. - KWAN, A. K. H. (2019): Co-addition of metakaolin and silica fume in mortar: Effects and advantages. Construction and Building Materials, 197, 716–724. https://doi.org/10.1016/j.conbuildmat.2018.11.244.
  46. MIAH, M. J. - HUAPING, R. - PAUL, S. C. - BABAFEMI, A. J. - LI, Y. (2023): Long-term strength and durability performance of eco-friendly concrete with supplementary cementitious materials. Innovative Infrastructure Solutions, 8, 255. https://doi.org/10.1007/s41062-023-01225-3.
  47. DERROUICHE, Y. - ACHOURA, D. - SALIBA, J. - CASSAGNABÈRE, F. (2025): Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development. Scientific African, 27, e02574. https://doi.org/10.1016/j.sciaf.2025.e02574.
  48. MOHSEN, M. O. - ABURUMMAN, M. O. - AL DISEET, M. M. - TAHA, R. - ABDEL-JABER, M. - SENOUCI, A. - TAQA, A. A. (2023): Fly ash and natural pozzolana impacts on sustainable concrete permeability and mechanical properties. Buildings, 13(8), 1927. https://doi.org/10.3390/buildings13081927.
  49. MOHSENI, E. - TANG, W. - CUI, H. (2017): Chloride diffusion and acid resistance of concrete containing zeolite and tuff as partial replacements of cement and sand. Materials, 10(4), 372. https://doi.org/10.3390/ma10040372.
  50. MEHTA, P. - MONTEIRO, P. (2020): Concrete: Microstructure, properties, and materials (4th ed.). McGraw-Hill.
  51. ABED, J. M. - AL-GBURI, M. - ALMSSAD, A. (2024): Evaluation of physical and mechanical properties of modified cement-lime mortar containing recycled granite powder waste as a partial fine aggregate replacement. Applied Sciences, 14(22), 10146. https://doi.org/10.3390/app142210146.
  52. ABED, D. M. - ABED, J. M. - AL-SAFFAR, Z. H. (2023): Review article on the use of lime mortar in heritage buildings. NTU Journal of Engineering and Technology, 2(3), 43–55. https://doi.org/10.56286/ntujet.v2i3.700.
  53. CHEN, J. - JIA, J. - ZHU, M. (2025): Role of supplementary cementitious materials on chloride binding behaviors and corrosion resistance in marine environment. Construction and Building Materials, 458, 139724. https://doi.org/10.1016/j.conbuildmat.2024.139724.
  54. ALI, L. H. - ATEMIMI, Y. K. (2025): Study the effect of waste materials ash (date seed ash) on expansive soil. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2025-0016.
  55. HARB, N. - DILMI, H. - BEZZAZI, B. - HAMITOUCHE, K. (2023): Effect of alternating hybridisation of fibres on the physico-mechanical behaviour of composite materials. Civil and Environmental Engineering, 19(1), 406–413. https://doi.org/10.2478/cee-2023-0036.
  56. ABED, J. M. - AL-GBURI, M. - ALMSSAD, A. (2024): Evaluation of physical and mechanical properties of modified cement-lime mortar containing recycled granite powder waste as a partial fine aggregate replacement. Applied Sciences, 14, 10146. https://doi.org/10.3390/app142210146.
DOI: https://doi.org/10.2478/cee-2025-0080 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 1065 - 1082
Published on: Jul 2, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ayad A. Mousa, Jasim M. Abed, Mohammed H. Shukur, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.