References
- HLINKA R, FARBAK M, ODROBINAK J (2024) The use of up-to date analyses for the temporary bridges application in the present. Civil and Environmental Engineering (20),491–507. https://doi.org/10.2478/cee-2024-0038.
- OSTAPENKO IS, SHAPTALA OI, Kramar IYe (2024) Application of untypical design solutions and schemes in the construction of temporary bridges. Bridges and Tunnels Theory Research Practice 71–77. https://doi.org/10.15802/bttrp2024/315371
- VIČAN J, ODROBIŇÁK J, GOCÁL J (2021) Determination of road bridge load -Carrying capacity. Civil and Environmental Engineering 17:286–297. https://doi.org/10.2478/cee-2021-0030.
- GOCAL J, ODROBINAK J, VICAN J (2022) On the load-carrying capacity produced by different load models for road bridges. IOP Conference Series Materials Science and Engineering 1252:012030. https://doi.org/10.1088/1757-899x/1252/1/012030
- VIČAN J, GOCÁL J, ODROBIŇÁK J, KOTEŠ P (2016) Existing steel railway bridges evaluation. Civil and Environmental Engineering 12:103–110. DOI10.1515/cee-2016-0014
- VAVRUŠ M, BUJŇÁK J, KOTEŠ P (2019) Experimental verification of real behavior of bridge structures using proof-load tests. Pollack Periodica (14),75–84. https://doi.org/10.1556/606.2019.14.1.8
- LI, S., LV, H., HUANG, T., ZHANG, Z., YAO, J., & NI, X. (2022). Degradation of reinforced concrete beams subjected to sustained loading and Multi-Environmental factors. Buildings, 12(9), 1382. https://doi.org/10.3390/buildings12091382FENTON, G. – GRIFFITHS, D.V.: Probabilistic Foundation Settlement of Specially Random Soil, Journal of Geotechnical and Geoenvironmental Engineering, 2002, pp. 381-390.
- RAO, A. S., LEPECH, M. D., KIREMIDJIAN, A. S., & SUN, X. (2016). SIMPLIFIED STRUCTURAL DETERIORATION MODEL FOR REINFORCED CONCRETE BRIDGE PIERS UNDER CYCLIC LOADING1. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 13(1), 55–66. https://DOI.ORG/10.1080/15732479.2016.1198402
- BAH, A. S., SANCHEZ, T., ZHANG, Y., SASAI, K., CONCIATORI, D., CHOUINARD, L., POWER, G. J., & ZUFFEREY, N. (2022). Assessing the condition state of a concrete bridge combining visual inspection and nonlinear deterioration model. Structure and Infrastructure Engineering, 20(2), 149–164. https://doi.org/10.1080/15732479.2022.2081987 MALLICK, R. B. - EL-KORCHI, T.: Pavement Engineering: Principles and Practise, 3rd edition. CRC Press, 2017, 776 p.
- AN, X. Z., YI, C., & DU, R. X. (2009). Performance Deterioration Behavior of Existing Reinforced Concrete Bridges. Advanced Materials Research, 79–82, 1367–1370. https://doi.org/10.4028/www.scientific.net/amr.79-82.1367
- VLCEK, J. – ĎUREKOVÁ, D. – ZGÚTOVÁ, K.(2015). Evaluation of Dynamic Methods for Earthwork Assessment. Civil and Environmental Engineering, 11(1), 38-44, doi: 10.1515/cee-2015-0005.
- FANG, J., ISHIDA, T., FATHALLA, E., & TSUCHIYA, S. (2021). Full-scale fatigue simulation of the deterioration mechanism of reinforced concrete road bridge slabs under dry and wet conditions. Engineering Structures, 245, 112988. https://doi.org/10.1016/j.engstruct.2021.112988
- BASTIDAS-ARTEAGA, E., BRESSOLETTE, P., CHATEAUNEUF, A., & SANCHEZ-SILVA, M. (2008). Probabilistic lifetime assessment of RC structures under coupled corrosion–fatigue deterioration processes. Structural Safety, 31(1), 84–96. https://doi.org/10.1016/j.strusafe.2008.04.001
- BASTIDAS-ARTEAGA, E. (2018). Reliability of reinforced concrete structures subjected to Corrosion-Fatigue and climate change. International Journal of Concrete Structures and Materials, 12(1). https://doi.org/10.1186/s40069-018-0235-x
- WANG, X., MAO, X., FRANGOPOL, D. M., DONG, Y., WANG, H., TAO, P., QI, Z., & TANG, S. (2021). Full-scale experimental and numerical investigation on the ductility, plastic redistribution, and redundancy of deteriorated concrete bridges. Engineering Structures, 234, 111930. https://doi.org/10.1016/j.engstruct.2021.111930
- SASMAL, S., & RAMANJANEYULU, K. (2007). Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Expert Systems With Applications, 35(3), 1430–1443. https://doi.org/10.1016/j.eswa.2007.08.017
- SASMAL, S., RAMANJANEYULU, K., & LAKSHMANAN, N. (2006). Priority ranking towards condition assessment of existing reinforced concrete bridges. Structure and Infrastructure Engineering, 3(1), 75–89. https://doi.org/10.1080/15732470500473549
- HAMDIA, K. M., ARAFA, M., & ALQEDRA, M. (2018). Structural damage assessment criteria for reinforced concrete buildings by using a Fuzzy Analytic Hierarchy process. Underground Space, 3(3), 243–249. https://doi.org/10.1016/j.undsp.2018.04.002
- GAO, Z., & LI, J. (2018). Fuzzy Analytic Hierarchy process evaluation method in assessing corrosion damage of reinforced concrete bridges. Civil Engineering Journal, 4(4), 843. https://doi.org/10.28991/cej-0309138
- LALLAM, M., DJEBLI, A., & MAMMERI, A. (2023b). Fuzzy Analytical hierarchy process for assessing damage in old masonry buildings: a case study. International Journal of Architectural Heritage, 1–20. https://doi.org/10.1080/15583058.2023.2295885
- LALLAM, M., & MAMMERI, A. (2023). Fuzzy analytical hierarchy damage assessment in old reinforced concrete buildings: case study.
- LALLAM, M., MAMMERI, A., & DJEBLI, A. (2021). Fuzzy analytical hierarchy processes for damage state assessment of arch masonry bridge. Civil Engineering Journal, 7(11), 1933–1946. https://doi.org/10.28991/cej-2021-03091770
