Have a personal or library account? Click to login
Fuzzy Analytic Hierarchy Process for Evaluating Damage in Reinforced Concrete Bridges Cover

Fuzzy Analytic Hierarchy Process for Evaluating Damage in Reinforced Concrete Bridges

Open Access
|Jul 2025

References

  1. HLINKA R, FARBAK M, ODROBINAK J (2024) The use of up-to date analyses for the temporary bridges application in the present. Civil and Environmental Engineering (20),491–507. https://doi.org/10.2478/cee-2024-0038.
  2. OSTAPENKO IS, SHAPTALA OI, Kramar IYe (2024) Application of untypical design solutions and schemes in the construction of temporary bridges. Bridges and Tunnels Theory Research Practice 71–77. https://doi.org/10.15802/bttrp2024/315371
  3. VIČAN J, ODROBIŇÁK J, GOCÁL J (2021) Determination of road bridge load -Carrying capacity. Civil and Environmental Engineering 17:286–297. https://doi.org/10.2478/cee-2021-0030.
  4. GOCAL J, ODROBINAK J, VICAN J (2022) On the load-carrying capacity produced by different load models for road bridges. IOP Conference Series Materials Science and Engineering 1252:012030. https://doi.org/10.1088/1757-899x/1252/1/012030
  5. VIČAN J, GOCÁL J, ODROBIŇÁK J, KOTEŠ P (2016) Existing steel railway bridges evaluation. Civil and Environmental Engineering 12:103–110. DOI10.1515/cee-2016-0014
  6. VAVRUŠ M, BUJŇÁK J, KOTEŠ P (2019) Experimental verification of real behavior of bridge structures using proof-load tests. Pollack Periodica (14),75–84. https://doi.org/10.1556/606.2019.14.1.8
  7. LI, S., LV, H., HUANG, T., ZHANG, Z., YAO, J., & NI, X. (2022). Degradation of reinforced concrete beams subjected to sustained loading and Multi-Environmental factors. Buildings, 12(9), 1382. https://doi.org/10.3390/buildings12091382FENTON, G. – GRIFFITHS, D.V.: Probabilistic Foundation Settlement of Specially Random Soil, Journal of Geotechnical and Geoenvironmental Engineering, 2002, pp. 381-390.
  8. RAO, A. S., LEPECH, M. D., KIREMIDJIAN, A. S., & SUN, X. (2016). SIMPLIFIED STRUCTURAL DETERIORATION MODEL FOR REINFORCED CONCRETE BRIDGE PIERS UNDER CYCLIC LOADING1. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 13(1), 55–66. https://DOI.ORG/10.1080/15732479.2016.1198402
  9. BAH, A. S., SANCHEZ, T., ZHANG, Y., SASAI, K., CONCIATORI, D., CHOUINARD, L., POWER, G. J., & ZUFFEREY, N. (2022). Assessing the condition state of a concrete bridge combining visual inspection and nonlinear deterioration model. Structure and Infrastructure Engineering, 20(2), 149–164. https://doi.org/10.1080/15732479.2022.2081987 MALLICK, R. B. - EL-KORCHI, T.: Pavement Engineering: Principles and Practise, 3rd edition. CRC Press, 2017, 776 p.
  10. AN, X. Z., YI, C., & DU, R. X. (2009). Performance Deterioration Behavior of Existing Reinforced Concrete Bridges. Advanced Materials Research, 79–82, 1367–1370. https://doi.org/10.4028/www.scientific.net/amr.79-82.1367
  11. VLCEK, J. – ĎUREKOVÁ, D. – ZGÚTOVÁ, K.(2015). Evaluation of Dynamic Methods for Earthwork Assessment. Civil and Environmental Engineering, 11(1), 38-44, doi: 10.1515/cee-2015-0005.
  12. FANG, J., ISHIDA, T., FATHALLA, E., & TSUCHIYA, S. (2021). Full-scale fatigue simulation of the deterioration mechanism of reinforced concrete road bridge slabs under dry and wet conditions. Engineering Structures, 245, 112988. https://doi.org/10.1016/j.engstruct.2021.112988
  13. BASTIDAS-ARTEAGA, E., BRESSOLETTE, P., CHATEAUNEUF, A., & SANCHEZ-SILVA, M. (2008). Probabilistic lifetime assessment of RC structures under coupled corrosion–fatigue deterioration processes. Structural Safety, 31(1), 84–96. https://doi.org/10.1016/j.strusafe.2008.04.001
  14. BASTIDAS-ARTEAGA, E. (2018). Reliability of reinforced concrete structures subjected to Corrosion-Fatigue and climate change. International Journal of Concrete Structures and Materials, 12(1). https://doi.org/10.1186/s40069-018-0235-x
  15. WANG, X., MAO, X., FRANGOPOL, D. M., DONG, Y., WANG, H., TAO, P., QI, Z., & TANG, S. (2021). Full-scale experimental and numerical investigation on the ductility, plastic redistribution, and redundancy of deteriorated concrete bridges. Engineering Structures, 234, 111930. https://doi.org/10.1016/j.engstruct.2021.111930
  16. SASMAL, S., & RAMANJANEYULU, K. (2007). Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Expert Systems With Applications, 35(3), 1430–1443. https://doi.org/10.1016/j.eswa.2007.08.017
  17. SASMAL, S., RAMANJANEYULU, K., & LAKSHMANAN, N. (2006). Priority ranking towards condition assessment of existing reinforced concrete bridges. Structure and Infrastructure Engineering, 3(1), 75–89. https://doi.org/10.1080/15732470500473549
  18. HAMDIA, K. M., ARAFA, M., & ALQEDRA, M. (2018). Structural damage assessment criteria for reinforced concrete buildings by using a Fuzzy Analytic Hierarchy process. Underground Space, 3(3), 243–249. https://doi.org/10.1016/j.undsp.2018.04.002
  19. GAO, Z., & LI, J. (2018). Fuzzy Analytic Hierarchy process evaluation method in assessing corrosion damage of reinforced concrete bridges. Civil Engineering Journal, 4(4), 843. https://doi.org/10.28991/cej-0309138
  20. LALLAM, M., DJEBLI, A., & MAMMERI, A. (2023b). Fuzzy Analytical hierarchy process for assessing damage in old masonry buildings: a case study. International Journal of Architectural Heritage, 1–20. https://doi.org/10.1080/15583058.2023.2295885
  21. LALLAM, M., & MAMMERI, A. (2023). Fuzzy analytical hierarchy damage assessment in old reinforced concrete buildings: case study.
  22. LALLAM, M., MAMMERI, A., & DJEBLI, A. (2021). Fuzzy analytical hierarchy processes for damage state assessment of arch masonry bridge. Civil Engineering Journal, 7(11), 1933–1946. https://doi.org/10.28991/cej-2021-03091770
DOI: https://doi.org/10.2478/cee-2025-0067 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 890 - 902
Published on: Jul 2, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Nadjet Berrekheroukh, Mostefa Lallam, Abdelkader Djebli, Abdelhamid Mammeri, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.