Have a personal or library account? Click to login
Thermal Comfort Analysis in the Smart Educational Building Together with Modified Model Development Cover

Thermal Comfort Analysis in the Smart Educational Building Together with Modified Model Development

Open Access
|Jun 2025

References

  1. AHMED, M.A. – JABER, H.T. – AL-HAYDARY M.M.: The Effectiveness of Innovative Systems Technologies in Smart Building Structures, Civil and Environmental Engineering, 20 (1), 194 - 203, 2024. https://doi.org/10.2478/cee-2024-0016
  2. FANGER, P.O.: Thermal Comfort, Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press,1974
  3. ISO STANDARD 7730: Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; Geneva, Switzerland, 2005
  4. KRAWCZYK, N.: Thermal comfort in the low energy building - validation and modification of the Fanger model, E3S Web of Conferences, Vol. 246, 2021, Iss.15003 Cold Climate HVAC & Energy 2021. https://doi.org/10.1051/e3sconf/202124615003
  5. DĘBSKA, L.: Developing the modified model of thermal comfort, The 11th International Conference on Engineering Mathematics and Physics IOP Publishing Journal of Physics: Conference Series, Vol. 2346, 2022, Iss. 012003. https://doi.org/10.1088/1742-6596/2346/1/012003
  6. OMIDVAR, A. – KIM, J.: Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates, Building and Environment, Vol. 176, 106868, 2020. https://doi.org/10.1016/j.buildenv.2020.106868
  7. AL-KAYIEM, H.H. – MOHAMMED, M.N. – KELLY, K. – RIYADI, T.W.B.: Effendy M, Experimental Assessment and Development of Thermal Comfort Model for Implication in Tropical Climate, International Journal of Computational Methods and Experimental Measurements, Vol. 11, Iss. 1, 2023, pp. 35-43, https://doi.org/10.18280/ijcmem.110105
  8. MENDES DA LUZ, I. – NIZA, I.L. – BRODAY, E.E.: The use of cluster analysis to assess thermal comfort in university classrooms, E3S Web of Conf. Vol. 396, 2023, Iss. 01105, The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023), https://doi.org/10.1051/e3sconf/202339601105
  9. STOKOWIEC, K. - KOTRYS-DZIAŁAK, D. – JASTRZĘBSKA, P.: Verification of the Fanger model with field experimental data, Journal of Physics: Conference Series, Vol. 2339, International Conference on Electronics, Engineering Physics and Earth Science 2022 (EEPES 2022) 21/06/2022 - 24/06/2022 Varna, Bulgaria, 2339 012027. DOI 10.1088/1742-6596/2339/1/012027
  10. NIZA, I.L. - BRODAY, E.E. An analysis of thermal comfort models: which one is suitable model to assess thermal reality in Brazil? Energies, Vol. 15, Iss. 5429, 2022. https://doi.org/10.3390/en15155429
  11. MANU, S. – SHUKLA, Y. – RAWAL, R. – THOMAS, L.E. - DE DEAR, R.: Field study of thermal comfort cross multiple climate Jones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, Vol. 98, 2016, pp. 55-70. https://doi.org/10.1016/j.buildenv.2015.12.019
  12. XINZHI, G. – QINGLIN, M. – YILEI, Y.: A Field Study on Thermal Comfort in Multi-Storey Residential Buildings in the Karst Area of Guilin, Sustainability, Vol. 13, Iss. 22, 12764, 2021 https://doi.org/10.3390/su132212764
  13. BALBIS – MOREJON, M. - REY – HERNANDEZ, J.M. – AMARIS - CASTILLA C. - VELASCO – GOMEZ, E. - SAN, J-A J.F – JAVIER, R-M. F.: Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate, Sustainability, Vol. 202, Iss. 12 (21) 8886, https://doi.org/10.3390/su12218886
  14. D’AMBRIOSO ALFANO, F.D. – IANNIELLO, E. – PALELLA, B.I.: PMV–PPD and acceptability in naturally ventilated schools, Building and Environment, Vol. 67, 2013, pp. 129 – 137, https://doi.org/10.1016/j.buildenv.2013.05.013
  15. BRODAY, E.E. – MORETO, J.A. – DE PAULA XAVIER, A.A. – DE OLIVEIRA, R.: The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis, International Journal of Industrial Ergonomics, Vol. 69, 2019, pp 1-8, https://doi.org/10.1016/j.ergon.2018.09.007
  16. ARMAN, A. – ALIREZA, B. – ELOSUA, A.I.: Assessment of Thermal Comfort and Indoor Air Quality in Library Group Study Rooms, Buildings, Vol. 13, Iss. 5, 2023, 1145, https://doi.org/10.3390/buildings13051145
  17. ZENDER - ŚWIERCZ, E. – TELEJKO, M.: Indoor air quality in kindergartens in Poland. IOP Conf Ser: Mater Sci Eng., Vol. 4712019, 092066. https://doi.org/10.1088/1757-899X/471/9/092066
  18. TELEJKO, M. – ZENDER-ŚWIERCZ, E.: An attempt to improve air quality in primary schools, Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE, Vol. 10, 2017, pp. 1-6, https://doi.org/10.3846/enviro.2017.051
  19. KANIOWSKI, R. – PONIEWSKI, M.: Measurements of two-phase flow patterns and local void fraction in vertical rectangular minichannel, Archives of Thermodynamics, Vol. 34, No. 2, 3–21, 2013. https://doi.org/10.2478/aoter-2013-0007
  20. TORRIANI, G. – LAMBERT, G. – SALVADORI, G. – FANTOZZI, F. – BABICH, F.: Thermal comfort and adaptive capacities: Differences among students at various school stages, Building and Environment, Vol. 237, 2023, 110340, https://doi.org/10.1016/j.buildenv.2023.110340
  21. LAMBERTI, G. – SALVADORI, G. – LECCESE, F. – FANTOZZI, F. – BLUYSSEN, P.M.: Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward, Sustainability, Vol. 13, Iss. 18, 202110315, https://doi.org/10.3390/su131810315
  22. KRAWCZYK, N. – DĘBSKA, L. – PIOTROWSKI, J.Zb. – HONUS, S. – MAJEWSKI, G.: Validation of the Fanger Model and Assessment of SBS Symptoms in the Lecture Room, 2023 Rocznik Ochrona Środowiska 25:68-76 DOI: 10.54740/ros.2023.008
  23. RAMADAN, I. – SALAH, T. – ALHARIRI, O.: Studying the Effect of Noise Barrier Characteristics on Traffic Noise in Urban Areas, Civil and Environmental Engineering, 20(2), 824 - 836, 2024. https://doi.org/10.2478/cee-2024-0061
  24. DUDKIEWICZ, E. – FIDORÓW-KAPRAWY, N. – SZAŁAŃSKI, P.: Environmental Benefits and Energy Savings from Gas Radiant Heaters’ Flue-Gas Heat Recovery. Sustainability, 14, 8013, 2022. https://doi.org/10.3390/su14138013
  25. DUDKIEWICZ, E. – FIDORÓW-KAPRAWY, N.: Hybrid domestic hot water system performance in industrial hall. Resources, 9, 65, 2020. https://doi.org/10.3390/resources9060065
  26. RATAJCZAK, K. – SZCZECHOWIAK, E.: The use of a heat pump in a ventilation unit as an economical and ecological source of heat for the ventilation system of an indoor swimming pool facility, Energies, 13, 6695, 2020. https://doi.org/10.3390/en13246695
  27. RATAJCZAK, K. – BANDURSKI, K. – PŁÓCIENNIK, A.: Incorporating an atrium as a HAVC element for energy consumption reduction and thermal comfort improvement in a Polish climate, Energy and Buildings, 277, 112592, 2022
  28. DĘBSKA L. – HONUS, S. - KRAWCZYK. N. – ORMAN, Ł.J. – PIOTROWSKI, J.Zb.: Thermal Comfort Analysis in the Smart Sustainable Building with Correlation Development, Rocznik Ochrona Środowiska, Vol. 25, pp. 116-127 2023. https://doi.org/10.54740/ros.2023.012
  29. PIASECKA M. – HOŻEJOWSKA, S. – MACIEJEWSKA, B. – PAWIŃSKA, A.: Time-dependent heat transfer calculations with Trefftz and Picard methods for flow boiling in a mini-channel heat sink. Energies, 14(7), 1832, 2021. https://doi.org/10.3390/en14071832
  30. NEŠOVIČ, A. – KOWALIK, R. – BOJOVIČ, M. – JANASZEK, A. – ADAMCZAK, S.: Elevational Earth-sheltered buildings with horizontal overhang photovoltaic-integrated panels — new energy-plus building concept in the territory of Serbia. Energies, 17, 2100, 2024. https://doi.org/10.3390/en17092100
  31. ŻÓRAWSKI, W. – CHATYS, R. – RADEK, N. – BOROWIECKA-JAMROŻEK, J.: Plasma sprayed composite coatings with reduced friction coefficient. Surface & Coatings Technology, 202, 4578-4582, 2008. https://doi.org/10.1016/j.surfcoat.2008.04.026
  32. ORMAN, Ł.J. – RADEK, N. – PIETRASZEK, J. – SZCZEPANIAK, M.: Analysis of enhanced pool boiling heat transfer on laser - textured surfaces. Energies, 13, 11, 2700, 2022. https://doi.org/10.3390/en13112700
  33. RADEK, N.: Determining the operational properties of steel beaters after electrospark deposition. Eksploatacja i Niezawodność - Maintenance and Reliability, 4, 10-16, 2009.
  34. RADEK, N. – MICHALSKI, M., MAZURCZUK, R. – SZCZODROWSKAM B. – PLEBANKIEWICZ I. – SZCZEPANIAK, M.: Operational tests of coating systems in military technology applications. Eksploatacja i Niezawodność - Maintenance and Reliability, 25, 1, 1-13, 2023. https://doi.org/10.17531/ein.2023.1.12
  35. WCIŚLIK, S.: Thermal infrared mapping of the Leidenfrost drop evaporation. Journal of Physics: Conference Series. 032064, 2016. https://doi.org/10.1088/1742-6596/745/3/032064
  36. BOROWSKI, M. – ZWOLIŃSKA, K. – CZERWIŃSKI, M.: An Experimental Study of Thermal Comfort and Indoor Air Quality - A Case Study of a Hotel Building. Energies, 15, 2026, 2022. https://doi.org/10.3390/en15062026
  37. EN 13779:2007 - Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems
  38. EN 16798-3:2017 “Energy performance of buildings - Ventilation for buildings – Part 3: For nonresidential buildings – Performance requirements for ventilation and room-conditioning systems (Modules M5-1, M5-4)”
DOI: https://doi.org/10.2478/cee-2025-0062 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 852 - 863
Published on: Jun 16, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Luiza Dębska, Stanislav Honus, Maciej Major, Łukasz J. Orman, Natalia Siwczuk, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.