Have a personal or library account? Click to login

Optimizing Strength and Impact of Hybrid Fiber Reinforced Modified Foamed Concrete by Response Surface Method (RSM)

Open Access
|May 2025

References

  1. A. RAJ, D. SATHYAN, and K. M. MINI, “Physical and functional characteristics of foam concrete: A review,” Constr. Build. Mater., vol. 221, pp. 787–799, 2019, doi: 10.1016/j.conbuildmat.2019.06.052.
  2. R. SIDDIQUE, J. KHATIB, and I. KAUR, “Use of recycled plastic in concrete: A review,” Waste Manag., vol. 28, no. 10, pp. 1835–1852, 2008, doi: 10.1016/j.wasman.2007.09.011.
  3. A. A. HILAL, N. H. THOM, and A. R. DAWSON, “On void structure and strength of foamed concrete made without/with additives,” Constr. Build. Mater., vol. 85, pp. 157–164, 2015.
  4. M. R. JONES and A. MCCARTHY, “Preliminary views on the potential of foamed concrete as a structural material,” Mag. Concr. Res., vol. 57, no. 1, pp. 21–31, 2005, doi: 10.1680/macr.2005.57.1.21.
  5. K. JITCHAIYAPHUM, T. SINSIRI, and P. CHINDAPRASIRT, “Cellular lightweight concrete containing pozzolan materials,” Procedia Eng., vol. 14, pp. 1157–1164, 2011.
  6. Y. H. MUGAHED AMRAN, “Determination of Structural Behavior of Precast Foamed Concrete Sandwich Panel,” p. 365, 2016.
  7. S. MINDESS, Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing, 2019.
  8. E. K. K. NAMBIAR and K. RAMAMURTHY, “Air-void characterisation of foam concrete,” Cem. Concr. Res., vol. 37, no. 2, pp. 221–230, 2007.
  9. M. A. OTHUMAN and Y. C. WANG, “Elevated-temperature thermal properties of lightweight foamed concrete,” Constr. Build. Mater., vol. 25, no. 2, pp. 705–716, 2011.
  10. A. JUST and B. MIDDENDORF, “Microstructure of high-strength foam concrete,” Mater. Charact., vol. 60, no. 7, pp. 741–748, 2009, doi: 10.1016/j.matchar.2008.12.011.
  11. K. W. DAY, Properties of concrete. 2021. doi: 10.4324/9780203967874-11.
  12. V. LESOVIK et al., “Improving the behaviors of foam concrete through the use of composite binder,” J. Build. Eng., vol. 31, p. 101414, 2020.
  13. N. FARZADING and M. AMRAN, “Properties and applications of foamed concrete; a review,” Constr. Build. Mater., vol. 101, pp. 990–1005, Dec. 2015, doi: 10.1016/j.conbuildmat.2015.10.112.
  14. N. HARB, H. DILMI, B. BEZZAZI, and K. HAMITOUCHE, “Effect of Alternating Hybridisation of Fibres on the Physico-Mechanical Behaviour of Composite Materials,” Civ. Environ. Eng., vol. 19, no. 1, pp. 406–413, 2023.
  15. E. D. JS, V. P. KULKARNI, A. P. SHAIKH, and B. E. GITE, “Effect of Hybrid Fiber on Mechanical Properties of Concrete”.
  16. N. H. A. AL-KHAFAJI and I. S. I. HARBA, “Shear and Flexural Behavior of Lightweight Concrete Beams Containing Hybrid Fibers,” Civ. Environ. Eng., vol. 19, no. 1, pp. 206–217, 2023.
  17. M. MASTALI, P. KINNUNEN, H. ISOMOISIO, M. KARHU, and M. ILLIKAINEN, “Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates,” Constr. Build. Mater., vol. 187, pp. 371–381, 2018.
  18. M. AMRAN et al., “Fibre-reinforced foamed concretes: A review,” Materials (Basel)., vol. 13, no. 19, p. 4323, 2020.
  19. M. R. JONES and A. MCCARTHY, “Preliminary views on the potential of foamed concrete as a structural material,” Mag. Concr. Res., vol. 57, no. 1, pp. 21–31, 2005.
  20. M. A. BEZERRA, R. E. SANTELLI, E. P. OLIVEIRA, L. S. VILLAR, and L. A. ESCALEIRA, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, 2008.
  21. S. ALSANUSI and L. BENTAHER, “Prediction of compressive strength of concrete from early age test result using design of experiments (RSM),” 2015.
  22. J. P. C. KLEIJNEN, “Response surface methodology for constrained simulation optimization: An overview,” Simul. Model. Pract. Theory, vol. 16, no. 1, pp. 50–64, 2008.
  23. ASTM, “Standard Specification for Portland Cement,” Annual Book of ASTM Standards, ASTM C 150-07,” ASTM Int., vol. 4.01, 2009.
  24. H. A. OBAID and A. A. HILAL, “Foam concrete made with micro and nano silica sand: Pore structure and properties,” Adv. Concr. Constr., vol. 12, no. 3, pp. 207–216, 2021, doi: 10.12989/acc.2021.12.3.207.
  25. ASTM, “Standard practice for making and curing concrete test specimens in the laboratory, ASTM C192M,” 2007, ASTM international West Conshohoken, PA, USA.
  26. W. BREWER, “Controlled low strength materials (CLSM), radical concrete technology,” in Proceedings of the International Conference on Concrete in the Service of Mankind, E&FN Spon London, UK, 1996, pp. 27–28.
  27. ASTM, Standard Test for Compressive Strength og Lightweight Insulating Concrete, ASTM C495M-12. West Conshohocken, PA 1-3, 2012.
  28. ASTM, “Standard test method for splitting tensile strength of cylindrical concrete specimens ASTM C496M-17,” ASTM Int., vol. i, pp. 1–5, 2011.
  29. ACI, “measurement of properities of fiber reinforced concrete, Committee ACI 544. 2R-89, (reapproved 2009),” 2009.
  30. Q. LI, L. CAI, Y. FU, H. WANG, and Y. ZOU, “Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles,” Constr. Build. Mater., vol. 93, pp. 620–626, 2015.
  31. P. N. BALAGURU and S. P. SHAH, Fiber-reinforced cement composites. 1992.
  32. E. P. KEARSLEY and H. F. MOSTERT, “The use of foamcrete in Southern Africa,” Spec. Publ., vol. 172, pp. 919–934, 1999.
  33. E. T. DAWOOD and M. RAMLI, “Mechanical properties of high strength flowing concrete with hybrid fibers,” Constr. Build. Mater., vol. 28, no. 1, pp. 193–200, 2012.
DOI: https://doi.org/10.2478/cee-2025-0035 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 462 - 474
Published on: May 17, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Areej Jamal Njyman, Ameer A. Hilal, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.