Have a personal or library account? Click to login

Performance Evaluation of Circular Cylindrical Shells Under Combined Axial Compression and Torsion

Open Access
|May 2025

References

  1. SHARIATI, M., HATAMI, H., TORABI, H., & EPAKCHI, H. R. (2012). Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading. Structural Engineering and Mechanics, 44(6), 753-762.
  2. IFAYEFUNMI, O. (2016). Buckling behavior of axially compressed cylindrical shells: Comparison of theoretical and experimental data. Thin-walled structures, 98, 558-564.
  3. WAGNER, H. N., HÜHNE, C., & JANSSEN, M. (2020). Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors. Thin-Walled Structures, 151, 106764.
  4. TAFRESHI, A., & BAILEY, C. G. (2007). Instability of imperfect composite cylindrical shells under combined loading. Composite Structures, 80(1), 49-64.
  5. SHAHGHOLIAN-GHAHFAROKHI, D., SAFARPOUR, M., & RAHIMI, A. (2021). Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines, 49(1), 81-102.
  6. EKSTROM, R. E. (1963). Buckling of cylindrical shells under combined torsion and hydrostatic pressure: Tests conducted to determine the stability of thin cylindrical shells under combined loads show that the nondimensional critical hydrostatic and torsional loads, P and T, follow the parabola P+ T 2= 1. Experimental Mechanics, 3, 192-197.
  7. YAMAKI, N. (1976). Experiments on the postbuckling behavior of circular cylindrical shells under torsion. In Buckling of Structures: Symposium Cambridge/USA, June 17–21, 1974 (pp. 312-330). Berlin, Heidelberg: Springer Berlin Heidelberg.
  8. YAMAKI, N., & MATSUDA, K. (1976). Postbuckling behavior of circular cylindrical shells under torsion. Ingenieur-Archiv, 45, 79-89.
  9. DE-YU, W., HONG-WEI, M., & GUI-TONG, Y. (1992). Studies on the torsional buckling of elastic cylindrical shells. Applied Mathematics and Mechanics, 13, 211-215.
  10. LOUCA, L. A., HARDING, J. E., & LUSAS. (1994). Torsional Buckling of Ring-Stiffeners in Cylindrical Shells Subjected to External Pressure. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 104(2), 219-230.
  11. TAN, D. (2000). Torsional buckling analysis of thin and thick shells of revolution. International journal of solids and structures, 37(22), 3055-3078.
  12. SOFIYEV, A. H. (2003). Torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to dynamic loading. European Journal of Mechanics-A/Solids, 22(6), 943-951.
  13. ZHANG, L., & TONG, G. (2004). Flexural–torsional buckling of thin-walled beam members based on shell buckling theory. Thin-Walled Structures, 42(12), 1665-1687.
  14. XU, X., MA, J., LIM, C. W., & ZHANG, G. (2010). Dynamic torsional buckling of cylindrical shells. Computers & structures, 88(5-6), 322-330.
  15. XU, X., SUN, J., & LIM, C. W. (2013). Dynamic torsional buckling of cylindrical shells in Hamiltonian system. Thin-Walled Structures, 64, 23-30.
  16. NINH, D. G., BICH, D. H., & KIEN, B. H. (2015). Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium. Acta Mechanica, 226(10), 3501-3519.
  17. SHAKOURI, M., SHARGHI, H., & KOUCHAKZADEH, M. A. (2017). Torsional buckling of generally laminated conical shell. Meccanica, 52, 1051-1061.
  18. CHO, H. K. (2018). Optimization of laminated composite cylindrical shells to maximize resistance to buckling and failure when subjected to axial and torsional loads. International Journal of Precision Engineering and Manufacturing, 19, 85-95.
  19. JAUNKY, N., & KNIGHT JR., N. F. (1999). An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression. The International Journal of Solids and Structures, 36, 3799–820.
  20. FERREIRA, A. J. M., & BARBOSA, J. T. (2000). Buckling behavior of composite shells. Composite Structures, 50, 93–8.
  21. WEAVER, P. M., DRIESEN, J. R., & ROBERTS, P. (2002). The effects of flexural/twist anisotropy on compression buckling of laminated cylindrical shells. Composite Structures, 55, 195–204.
  22. ESTEKANCHI, H. E., & VAFAI, A. (1999). On the buckling of cylindrical shells with through cracks under axial load. Thin-Walled Structures, 35, 255–74.
  23. WEAVER, P. M. (2000). Design of laminated composite cylindrical shells under axial compression. Composites Part B, 31, 669–79.
  24. GEIER, B., MEYER-PEIENING, H. R., & ZIMMERMANN, R. (2002). On the influence of laminated stacking on buckling of composite cylindrical shells subjected to axial compression. Composite Structures, 55, 467–74.
  25. SUN, G., & HANSAN, J. S. (1998). Optimal design of laminated composite circular–cylindrical shells subjected to combined loads. Journal of Applied Mechanics, 55, 136–42.
  26. DIACONU, C. G., MASAKI, S., & SEKINE, H. (2002). Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters. Composite Structures, 58, 423–33.
  27. MEYER-PEIENING, H. R., FARSHAD, M., GEIER, B., & ZIMMERMANN, R. (2001). Buckling loads of CFRP composite cylinders under combined axial and torsion loading—experiments and computations. Composite Structures, 53, 427–35.
  28. SAI RAM, K. S., & SREEDHAR BABU, T. (2002). Buckling of laminated composite shells under transverse load. Composite Structures, 55, 157–68.
  29. VAZIRI, A., & ESTEKANCHI, H. E. (2006). Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression. Thin-Walled Structures, 44, 141–51.
  30. STARNES JR., J. H., & ROSE, C. A. (1997). Nonlinear response of thin cylindrical shells with longitudinal cracks and subjected to internal pressure and axial compression loads. Paper no. 97-1144. AIAA.
  31. ALLAHBAKHSH, HAMIDREZA, & SHARIATI, MAHMOUD. (2012). Buckling of cracked laminated composite cylindrical shells subjected to combined loading. Applied Composite Materials.
  32. Batikha, M. (2008). Strengthening of thin metallic cylindrical shells using fiber-reinforced polymers.
  33. TENG, J. G., & HU, Y. M. (2007). Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression. Construction and Building Materials, 21(4), 827-838.
  34. KRISHNA, G. V., NARAYANAMURTHY, V., & VISWANATH, C. (2021). Effectiveness of FRP strengthening on buckling characteristics of metallic cylindrical shells. Composite Structures, 262, 113653.
  35. DRAIDI, Z., BUI, T. T., LIMAM, A., TRAN, H. V., & BENNANI, A. (2018). Buckling behavior of metallic cylindrical shell structures strengthened with CFRP composite. Advances in Civil Engineering, 2018.
  36. TARAGHI, P., ZIRAKIAN, T., & KARAMPOUR, H. (2021). Parametric study on buckling stability of CFRP-strengthened cylindrical shells subjected to uniform external pressure. Thin-Walled Structures, 161, 107411.
  37. BISAGNI, C. (1998, September). Buckling tests of carbon-epoxy laminated cylindrical shells under axial compression and torsion. In XXI ICAS Congress, Melbourne (Australia).
  38. HUANG, H., ZHANG, Y., & HAN, Q. (2017). Inelastic buckling of FGM cylindrical shells subjected to combined axial and torsional loads. International Journal of Structural Stability and Dynamics, 17(09), 1771010.
  39. YADAV, K. K., & GERASIMIDIS, S. (2019). Instability of thin steel cylindrical shells under bending. Thin-Walled Structures, 137, 151-166.
  40. FAN, H. (2019). Critical buckling load prediction of axially compressed cylindrical shell based on nondestructive probing method. Thin-Walled Structures, 139, 91-104.
  41. WAGNER, H. N. R., HÜHNE, C., & ELISHAKOFF, I. (2020). Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression. Thin-Walled Structures, 146, 106451.
  42. KRISHNA, G. V., NARAYANAMURTHY, V., & VISWANATH, C. (2020). Modeling the buckling characteristics of the metal-FRP hybrid cylinder. Composite Structures, 250, 112505.
DOI: https://doi.org/10.2478/cee-2025-0034 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 437 - 461
Published on: May 17, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Mustafa Ayad Murad, Hossein Showkati, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.