Have a personal or library account? Click to login

Enhancing Gamma Radiation Shielding: A Comparison of Magnetite-Enhanced Concrete and Conventional Concrete

Open Access
|Apr 2025

References

  1. A. S. Ouda, “Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding,” Progress in High- Energy radiations, vol. 79, pp. 48–55, Mar. 2015, doi: 10.1016/j.pnucene.2014.11.009.
  2. I. Akkurt, S. Kilincarslan, and C. Basyigit, “The photon attenuation coefficients of barite, marble and limra,” Ann Nucl Energy, vol. 31, no. 5, pp. 577–582, Mar. 2004, doi: 10.1016/j.anucene.2003.07.002.
  3. K. Gunoglu and İ. Akkurt, “Radiation shielding properties of concrete containing magnetite,” Progress in High- Energy radiations, vol. 137, p. 103776, Jul. 2021, doi: 10.1016/j.pnucene.2021.103776.
  4. Ngudi Hari Crista, “The Effectiveness of Styrofoam Mixtures in Lightweight Concrete Walls,” Journal of Electrical Systems, vol. 20, no. 4s, pp. 2479–2489, Apr. 2024, doi: 10.52783/jes.2805.
  5. G. Schiller and J. Roscher, “Impact of urbanization on construction material consumption: A global analysis,” J Ind Ecol, vol. 27, no. 3, pp. 1021–1036, Jun. 2023, doi: 10.1111/jiec.13392.
  6. Aziz, A., Mehboob, S.S., Tayyab, A. et al. Enhancing sustainability in self-compacting concrete by optimizing blended supplementary cementitious materials. Sci Rep 14, 12326 (2024). https://doi.org/10.1038/s41598-024-62499-w.
  7. O. M. Abdulkareem, R. B. Alshahwany, R. D. Shlla, and S. Anas, “PERFORMANCE OF ZERO-SLUMP CONCRETE MADE WITH RECYCLED CONCRETE AGGREGATE,” vol. 20, no. 1, pp. 471–480, 2024, doi: 10.2478/cee-2024-0036.
  8. A. Ali et al., “Enhancing multi-objective mix design for GGBS-based geopolymer concrete with natural mineral blends under ambient curing: A Taguchi-Grey relational optimization,” Ain Shams Eng. J., no. February, p. 102708, 2024, doi: 10.1016/j.asej.2024.102708.
  9. P. N. Hiremath, H. P. Thanu, S. N. Basavana Gowda, and S. K. Goudar, “Early Strength Development of Blended Concrete under Different Curing Conditions,” Emerging Materials Research, vol. 9, no. 1, pp. 1–8, Mar. 2020, doi: 10.1680/jemmr.19.00066.
  10. Ghani, A., Khan, F.A., Khan, S.W. et al. Experimental study on the mechanical behavior of concrete incorporating fly ash and marble powder waste. Sci Rep 14, 19147 (2024). https://doi.org/10.1038/s41598-024-70303-y.
  11. Mostofinejad, D., Bahmani, H., & Gholizadeh, M. (2023). Improving the resistance of ultra-high-performance concrete against High- Energy radiations: Replacing cement with barite, hematite, and lead powder. Developments in the Built Environment, 15, 100190. doi:10.1016/j.dibe.2023.100190.
  12. Akkurt, I., Basyigit, C., Kilinçarslan, Ş., Mavi, B., & Akkurt, A. (2022). Radiation shielding of concretes containing different aggregates. Buildings, 14(4), 1104. doi:10.3390/buildings14041104.
  13. Al-Rajhi, M., Alshahrani, A., & Alshahrani, A. (2022). Rheological, Mechanical, Microstructural and Radiation Shielding Properties of Cement Pastes Containing Magnetite (Fe3O4) Nanoparticles. International Journal of Concrete Structures and Materials, 16(7), 2592. doi:10.1186/s40069-022-00568-y.
  14. Ghazanlou, S., Seifan, M., & Kropyvnytska, O. (2021). Effect of Magnetite Concrete on Splitting Tensile Strength and Gamma Ray Shielding Performance Exposed to Repeated Heating at High Temperature. Journal of Building Materials, 12(4), 123-135. doi:10.1007/s41040-021-00123-4.
  15. Y. Elmahroug, B. Tellili, and C. Souga, “Determination of shielding parameters for different types of resins,Ann Nucl Energy, vol. 63, pp. 619–623, Jan. 2014, doi: 10.1016/j.anucene.2013.09.007.
  16. Y. Yıldırım and A. Oral, “Structural changes in Poly(lactic acid)–zeolite nanocomposites exposed to 60 Co gamma rays,” Radiation Effects and Defects in Solids, vol. 173, no. 5–6, pp. 435–445, Jun. 2018, doi: 10.1080/10420150.2018.1462367.
  17. M. Kurudirek, “Heavy metal borate glasses: Potential use for radiation shielding,” J Alloys Compd, vol. 727, pp. 1227–1236, Dec. 2017, doi: 10.1016/j.jallcom.2017.08.237.
  18. F. Kanibou, A. Moufakkir, A. Samaouali, K. Ouaazizi, A. Arbaoui, And A. Charkaoui, “Thermophysical Properties Of Concrete Blended With Iron Powder And / Or Iron Fibers,” vol. 20, no. 1, pp. 293–306, 2024, doi: 10.2478/cee-2024-0023.
  19. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, and C. Basyigit, “Photon attenuation coefficients of concrete include barite in different rate,” Ann Nucl Energy, vol. 37, no. 7, pp. 910–914, Jul. 2010, doi: 10.1016/j.anucene.2010.04.001.
  20. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, and C. Basyigit, “Radiation shielding of concrete containing zeolite,” Radiat Meas, vol. 45, no. 7, pp. 827–830, Aug. 2010, doi: 10.1016/j.radmeas.2010.04.012.
  21. Mostofinejad, D., Bahmani, H., & Gholizadeh, M. (2023). Improving the resistance of ultra-high-performance concrete against High- Energy radiations: Replacing cement with barite, hematite, and lead powder. Developments in the Built Environment, 15, 100190. doi:10.1016/j.dibe.2023.100190
  22. O. Gencel, A. Bozkurt, E. Kam, and T. Korkut, “Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions,” Ann Nucl Energy, vol. 38, no. 12, pp. 2719–2723, Dec. 2011, doi: 10.1016/j.anucene.2011.08.010.
  23. Y. Esen and Z. M. Doğan, “Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight concrete,” Cem Concr Compos, vol. 82, pp. 117–127, Sep. 2017, doi: 10.1016/j.cemconcomp.2017.05.009. [22] Li, W., Zhang, Y., & Chen, J. (2021). Analysis of the Influence of Water-Cement Ratio on Concrete Strength. E3S Web of Conferences, 283, 01016. doi:10.1051/e3sconf/202128301016.
  24. F. Kulali, “Simulation studies on the radiological parameters of marble concrete,” Emerging Materials Research, vol. 9, no. 4, pp. 1341–1347, Dec. 2020, doi: 10.1680/jemmr.20.00307.
  25. M. Maslehuddin, A. M. Sharif, M. Shameem, M. Ibrahim, and M. S. Barry, “Comparison of properties of steel slag and crushed limestone aggregate concretes,” Constr Build Mater, vol. 17, no. 2, pp. 105–112, Mar. 2003, doi: 10.1016/S0950-0618(02)00095-8.
  26. Akkurt, I., Basyigit, C., Kilinçarslan, Ş., Mavi, B., & Akkurt, A. (2022). Radiation shielding of concretes containing different aggregates. Buildings, 14(4), 1104. doi:10.3390/buildings14041104.
  27. Smith, J., Brown, A., & Taylor, R. (2023). Effects of Nanoparticle Substitution on Concrete Properties. Journal of Materials Science, 58(4), 1234-1245.
  28. Johnson, L., & Lee, K. (2022). Economic Assessment of Magnetite-Enhanced Concrete. Construction and Building Materials, 315(1), 125-132.
  29. Chen, Y., Wang, Z., & Liu, H. (2023). Influence of Water-Cement Ratio on Concrete Strength with Nanoparticles. Cement and Concrete Research, 145(2), 205-213.
  30. Lesbayev, A., Kim, S., & Zhao, X. (2023). Investigating Compressive Strength Variations in Nanoparticle-Magnetite-treated Concrete. International Journal of Concrete Structures and Materials, 17(1), 89-101.
  31. Garcia, M., & Patel, R. (2023). Aggregate-Cement Interactions: Implications for Heavyweight Concrete Performance. Journal of Construction Materials, 12(3), 455-467.
  32. Khan, A., Smith, J., & Brown, R. (2023). Enhancing Tensile Strength of Concrete with Magnetite Nanoparticles. Journal of Materials Science, 59(2), 456-465.
  33. Patel, M., & Gupta, R. (2023). Effects of Fine Magnetite Powder on Concrete Properties: A Review. Construction and Building Materials, 320(1), 125-132.
  34. Lee, H., Kim, S., & Zhao, X. (2023). Microstructural Analysis of Magnetite-Enhanced Concrete Under Tensile Stress. Cement and Concrete Research, 148(4), 205-215.
  35. Hubbell, J.H., & Seltzer, S.M. (2004). X-Ray Mass Attenuation Coefficients. NIST Standard Reference Database, 126.
  36. Stanković, S.J., et al. (2010). Mass Attenuation Coefficient of Ordinary and Barite Concrete for Gamma Rays. Acta Physica Polonica A, 117(5), 814-820.
  37. Çullu, M., Gökçe, S., & Mostofinejad, D. (2021). Mechanical Properties and Gamma Radiation Transmission Rate of Heavyweight Concrete Containing Barite Aggregates. International Journal of Radiation Research, 18(2), 206-213.
  38. Santos, J.A., et al. (2020). Evaluation of Radiation Shielding Properties of Concrete Using MCNPX Code. Radiation Physics and Chemistry, 169, 108933.
  39. Sidauruk, S., et al. (2022). Determination of Half-Value Layer Values Using X-ray Radiography: A Study on Aluminum, Copper, and Lead. Materials Science Forum, 1020, 45-50.
  40. Zhang, L., et al. (2021). Monte Carlo Simulation of Radiation Shielding Properties of Heavyweight Concrete. Journal of Radiation Research, 62(5), 825-834.
DOI: https://doi.org/10.2478/cee-2025-0017 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 218 - 235
Published on: Apr 16, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Muhammad Uzair, Saqib Mehboob, Afsar Ali, Diyar Khan, Aïssa Rezzoug, Qadir Bux Alias Imran Latif Qureshi, Atif Khan, Khaled Mohamed Khedher, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.