References
- KADHIM, F. J. - ABED, M. S. - ALMUSAWI, J. K.: Feasibility of strengthening sandy soils using industry waste as geo-fiber, Civil and Environmental Engineering, Vol. 19, Issue 2, 649-661, DOI: 10.2478/cee-2023-0059.
- RÚHIG, R. - RÚHIGOVÁ, E.: Effect of glazed loggias on the energy efficiency of a T08b prefabricated dwelling – a case study, Slovak Journal of Civil Engineering, Vol. 29, 2021, No. 3, 41 – 50, DOI: 10.2478/sjce-2021-0020.
- LALOUI, L. - ROTTA LORIA, A. F.: Analysis and Design of Energy Geostructures. Academic Press, 2020, 1096 p., ISBN 978-0-12-820623-2.
- ADAM, D. - BRUNNER, A. - MARKIEWICZ, R. - PISTROL, J.: Long-term experience of the thermo-active ground source system at the metro station Taborstrasse in Vienna, Acta Polytechnica CTU Proceedings, Volume 45, 2023, 13 p.
- HOSEINIMIGHANI, H. - SZENDEFY, J.: Comparison of different methods for measuring thermal properties of soil: review on laboratory, in-situ and numerical modelling methods, Energy, 2021, Volume 27, 31 p.
- DURMEKOVÁ, T. - WAGNER, P. - FRANKOVSKÁ, J.: Properties of rocks and their determination in the laboratory. 1. Rocks. Comenius University in Bratislava (Vlastnosti hornín a ich stanovenie v laboratóriu. 1. Skalné horniny. Univerzita Komenského v Bratislave), 2013, 173 p., ISBN 978-80-223-3330-6.
- SIA D 0190: Use of geothermal energy with foundation piles and other concrete components in contact with the earth - Guide to planning, construction and operation, SIA Zurich. (Nutzung der Erdwärme mit Fundationspfählen und anderen erdberührenden Betonbauteilen - Leitfaden zu Planung, Bau und Betrieb, SIA Zurich.), 2005, 101 p.
- HARIDY, S. - ALNAGBI, K. - RADWAN, A. - ARAB, G. M.: Optimizing the thermal performance of energy piles using response surface methodology, Case Studies in Thermal Engineering, 2023, Volume 41, 102637.
- STN 73 0540-2+Z1+Z2: Thermal protection of buildings. Thermal technical properties of construction structures and buildings. Part 2: Functional requirements. Consolidated wording. (Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Časť 2: Funkčné požiadavky. Konsolidované znenie.), 2019, 36 p.
- HANSEN, S. - JENSEN, H. E. - NIELSEN, N. E. - SVENDSEN, H.: Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fertilizer Research, 1991, Volume 27, pp. 245-259.
- SLAVKOV, J.: Thermal conductivity of soil in different climatic conditions. (Tepelná vodivosť horninového prostredia v rôznych klimatických podmienkach), Proceedings of the 15th Slovak Geotechnical Conference, Spektrum STU, 2023, pp. 370-378.
- BOUAZZA, A. - MANESSERO, M. - WANG, B. - DOMINIJANNI, A. - SINGH, R. M. - FORTI, S. - CEVRO, S. - MUSSO, G.: Soil effective thermal conductivity from energy pile thermal tests, Coupled Phenomena in Environmental Geotechnics: Proceedings of the International Symposium, Torino, Italy, 1–3 July 2013, Taylor & Francis, London, pp. 211–219.
- prEN 1997-2: Eurocode 7. Part 2. Geotechnical design - Ground properties, 2022, 148 p.
- ÖZKAHRAMAN, H. T. - SELVER, R. - IŞIK, E. C.: Determination of Thermal Conductivity of rock from P-wave velocity, International Journal of Rock Mechanics and Mining Sciences, 2004, Volume 41, pp. 703-708.
- INCROPERA, F. P. - DEWITT, D. P.: Fundamentals of Heat and Mass Transfer, 3rd Edition, Wiley, 1990, 992 pages.
- RAO, S. - HU, S. - ZHU, C. - TANG, X. - LI, W. - WANG, J.: The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China, Chinese Journal of Geophysics, 2013, Volume 56, pp. 2760-2770.
- ZHANG, N. - WANG, Z.: Review of soil thermal conductivity and predictive models, International Journal of Thermal Sciences, 2017, Volume 117, pp. 172-183.
- TOAN, C. - KUMAR, S. - VAHEDIFARD, F. - AMIRLATIFI, A.: General Thermal Conductivity Function for Unsaturated Soils Considering Effects of Water Content, Temperature, and Confining Pressure, Journal of Geotechnical and Geoenvironmental Engineering, 2021, Volume 147, 18 p.
- BRANDON, T. L. - MITCHELL, J. K.: Factors influencing thermal resistivity of sands, Journal Geotechnical Engineering, 1989, Volume 115, No 12, pp. 1683–1698.
- YUN, T. S. - SANTAMARINA, J. C.: Fundamental study of thermal conduction in dry soils, Granular Matter, 2008, Volume 10, pp. 197-207.
- CHEN, S. X.: Thermal conductivity of sands, Heat Mass Transfer, 2008, Volume 44, pp. 1241–1246.
- VARGAS, W. L. - MCCARTHY, J. J.: Heat conduction in granular materials, American Institute of Chemical Engineers Journal, 2001, Volume 47, pp. 1052–1059.
- ZHANG, T. - CAI, G. - LIU, S. - PUPPALA, A. J.: Investigation on thermal characteristics and prediction models of soils, International Journal of Heat Mass Transfer, 2017, Volume 106, pp.1074–1086.
- MOHYLA, M. - HRUBESOVA, E. - MARTINKAUPPI, B. - MÄKIRANTA, A. - TUOMI, V.: Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland, Renewable Energy, 221, 119770, 2024.
- JOHANSEN, O.: Thermal conductivity of soils, Ph.D. dissertation, Defense Technical Information Center, Norwegian University of Science and Technology, 1977, 322 p.
- XU, Y. - SUN, D. - ZENG, Z. - LV, H.: Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range, International Journal of Heat and Mass Transfer, 2019, Volume 138, pp. 562-570, ISSN 0017-9310.
- LU, S. - REN, T.: Model for predicting soil thermal conductivity at various temperatures, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2009, Volume 25, pp. 13-18.
- HIRAIWA, Y. - KASUBUCHI, T.: Temperature dependence of soil thermal conductivity over a wide range of temperature (5–75°C), European Journal of Soil Science, 2000, Volume 51, pp. 211–218.
- LIU, C. H. - ZHOU, D. - WU, H.: Measurement and prediction of temperature effects of thermal conductivity of soils, Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2011, Volume 33, pp. 1877–1886.
- SMITS, K. M. - SAKAKI, T. - HOWINGTON, S. E. - PETERS, J. F. - ILLANGASEKARE, T. H.: Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70 °C), Vadose Zone Journal, 2013, Volume 12, pp. 2256–2265.
- KUČOVÁ, E. - FRANKOVSKÁ, J.: The angle of the shear resistance of Danube gravel derived from the dynamic penetration test, Slovak Journal of Civil Engineering, 2023, 31. pp. 38-46.
- VASS, D. - BEGAN, A. - GROSS, P. - KAHAN, Š. - KÖHLER, E. - KRYSTEK, I. - LEXA, J. - NEMČOK, J.: Regional geological division of the Western Carpathians and the northern reaches of the Pannonian Basin on the territory of the Czechoslovak Socialist Republic (M 1:500 000), Geologický ústav Dionýza Štúra, Bratislava, 1988.
- ANDUJAR MARQUEZ, J. - BOHÓRQUEZ, M. A. - MELGAR, S.: Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems, Sensors, 2016, 13 p.
- SMITS, K. M. - SAKAKI, T. - LIMSUWAT, A. - ILLANGASEKARE, H. T.: Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles, Vadose Zone Journal, 2010, Volume 9, pp. 1–9.
- AYAZ, H. - FAIZAL, M. - BOUAZZA, A.: Energy, economic, and carbon emission analysis of a residential building with an energy pile system, Renewable Energy, 220, 119712, 2024.
