Have a personal or library account? Click to login
Energy Potential of the Bratislava Neogene Cover
Open Access
|Dec 2024

References

  1. KADHIM, F. J. - ABED, M. S. - ALMUSAWI, J. K.: Feasibility of strengthening sandy soils using industry waste as geo-fiber, Civil and Environmental Engineering, Vol. 19, Issue 2, 649-661, DOI: 10.2478/cee-2023-0059.
  2. RÚHIG, R. - RÚHIGOVÁ, E.: Effect of glazed loggias on the energy efficiency of a T08b prefabricated dwelling – a case study, Slovak Journal of Civil Engineering, Vol. 29, 2021, No. 3, 41 – 50, DOI: 10.2478/sjce-2021-0020.
  3. LALOUI, L. - ROTTA LORIA, A. F.: Analysis and Design of Energy Geostructures. Academic Press, 2020, 1096 p., ISBN 978-0-12-820623-2.
  4. ADAM, D. - BRUNNER, A. - MARKIEWICZ, R. - PISTROL, J.: Long-term experience of the thermo-active ground source system at the metro station Taborstrasse in Vienna, Acta Polytechnica CTU Proceedings, Volume 45, 2023, 13 p.
  5. HOSEINIMIGHANI, H. - SZENDEFY, J.: Comparison of different methods for measuring thermal properties of soil: review on laboratory, in-situ and numerical modelling methods, Energy, 2021, Volume 27, 31 p.
  6. DURMEKOVÁ, T. - WAGNER, P. - FRANKOVSKÁ, J.: Properties of rocks and their determination in the laboratory. 1. Rocks. Comenius University in Bratislava (Vlastnosti hornín a ich stanovenie v laboratóriu. 1. Skalné horniny. Univerzita Komenského v Bratislave), 2013, 173 p., ISBN 978-80-223-3330-6.
  7. SIA D 0190: Use of geothermal energy with foundation piles and other concrete components in contact with the earth - Guide to planning, construction and operation, SIA Zurich. (Nutzung der Erdwärme mit Fundationspfählen und anderen erdberührenden Betonbauteilen - Leitfaden zu Planung, Bau und Betrieb, SIA Zurich.), 2005, 101 p.
  8. HARIDY, S. - ALNAGBI, K. - RADWAN, A. - ARAB, G. M.: Optimizing the thermal performance of energy piles using response surface methodology, Case Studies in Thermal Engineering, 2023, Volume 41, 102637.
  9. STN 73 0540-2+Z1+Z2: Thermal protection of buildings. Thermal technical properties of construction structures and buildings. Part 2: Functional requirements. Consolidated wording. (Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Časť 2: Funkčné požiadavky. Konsolidované znenie.), 2019, 36 p.
  10. HANSEN, S. - JENSEN, H. E. - NIELSEN, N. E. - SVENDSEN, H.: Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fertilizer Research, 1991, Volume 27, pp. 245-259.
  11. SLAVKOV, J.: Thermal conductivity of soil in different climatic conditions. (Tepelná vodivosť horninového prostredia v rôznych klimatických podmienkach), Proceedings of the 15th Slovak Geotechnical Conference, Spektrum STU, 2023, pp. 370-378.
  12. BOUAZZA, A. - MANESSERO, M. - WANG, B. - DOMINIJANNI, A. - SINGH, R. M. - FORTI, S. - CEVRO, S. - MUSSO, G.: Soil effective thermal conductivity from energy pile thermal tests, Coupled Phenomena in Environmental Geotechnics: Proceedings of the International Symposium, Torino, Italy, 1–3 July 2013, Taylor & Francis, London, pp. 211–219.
  13. prEN 1997-2: Eurocode 7. Part 2. Geotechnical design - Ground properties, 2022, 148 p.
  14. ÖZKAHRAMAN, H. T. - SELVER, R. - IŞIK, E. C.: Determination of Thermal Conductivity of rock from P-wave velocity, International Journal of Rock Mechanics and Mining Sciences, 2004, Volume 41, pp. 703-708.
  15. INCROPERA, F. P. - DEWITT, D. P.: Fundamentals of Heat and Mass Transfer, 3rd Edition, Wiley, 1990, 992 pages.
  16. RAO, S. - HU, S. - ZHU, C. - TANG, X. - LI, W. - WANG, J.: The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China, Chinese Journal of Geophysics, 2013, Volume 56, pp. 2760-2770.
  17. ZHANG, N. - WANG, Z.: Review of soil thermal conductivity and predictive models, International Journal of Thermal Sciences, 2017, Volume 117, pp. 172-183.
  18. TOAN, C. - KUMAR, S. - VAHEDIFARD, F. - AMIRLATIFI, A.: General Thermal Conductivity Function for Unsaturated Soils Considering Effects of Water Content, Temperature, and Confining Pressure, Journal of Geotechnical and Geoenvironmental Engineering, 2021, Volume 147, 18 p.
  19. BRANDON, T. L. - MITCHELL, J. K.: Factors influencing thermal resistivity of sands, Journal Geotechnical Engineering, 1989, Volume 115, No 12, pp. 1683–1698.
  20. YUN, T. S. - SANTAMARINA, J. C.: Fundamental study of thermal conduction in dry soils, Granular Matter, 2008, Volume 10, pp. 197-207.
  21. CHEN, S. X.: Thermal conductivity of sands, Heat Mass Transfer, 2008, Volume 44, pp. 1241–1246.
  22. VARGAS, W. L. - MCCARTHY, J. J.: Heat conduction in granular materials, American Institute of Chemical Engineers Journal, 2001, Volume 47, pp. 1052–1059.
  23. ZHANG, T. - CAI, G. - LIU, S. - PUPPALA, A. J.: Investigation on thermal characteristics and prediction models of soils, International Journal of Heat Mass Transfer, 2017, Volume 106, pp.1074–1086.
  24. MOHYLA, M. - HRUBESOVA, E. - MARTINKAUPPI, B. - MÄKIRANTA, A. - TUOMI, V.: Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland, Renewable Energy, 221, 119770, 2024.
  25. JOHANSEN, O.: Thermal conductivity of soils, Ph.D. dissertation, Defense Technical Information Center, Norwegian University of Science and Technology, 1977, 322 p.
  26. XU, Y. - SUN, D. - ZENG, Z. - LV, H.: Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range, International Journal of Heat and Mass Transfer, 2019, Volume 138, pp. 562-570, ISSN 0017-9310.
  27. LU, S. - REN, T.: Model for predicting soil thermal conductivity at various temperatures, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2009, Volume 25, pp. 13-18.
  28. HIRAIWA, Y. - KASUBUCHI, T.: Temperature dependence of soil thermal conductivity over a wide range of temperature (5–75°C), European Journal of Soil Science, 2000, Volume 51, pp. 211–218.
  29. LIU, C. H. - ZHOU, D. - WU, H.: Measurement and prediction of temperature effects of thermal conductivity of soils, Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2011, Volume 33, pp. 1877–1886.
  30. SMITS, K. M. - SAKAKI, T. - HOWINGTON, S. E. - PETERS, J. F. - ILLANGASEKARE, T. H.: Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70 °C), Vadose Zone Journal, 2013, Volume 12, pp. 2256–2265.
  31. KUČOVÁ, E. - FRANKOVSKÁ, J.: The angle of the shear resistance of Danube gravel derived from the dynamic penetration test, Slovak Journal of Civil Engineering, 2023, 31. pp. 38-46.
  32. VASS, D. - BEGAN, A. - GROSS, P. - KAHAN, Š. - KÖHLER, E. - KRYSTEK, I. - LEXA, J. - NEMČOK, J.: Regional geological division of the Western Carpathians and the northern reaches of the Pannonian Basin on the territory of the Czechoslovak Socialist Republic (M 1:500 000), Geologický ústav Dionýza Štúra, Bratislava, 1988.
  33. ANDUJAR MARQUEZ, J. - BOHÓRQUEZ, M. A. - MELGAR, S.: Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems, Sensors, 2016, 13 p.
  34. SMITS, K. M. - SAKAKI, T. - LIMSUWAT, A. - ILLANGASEKARE, H. T.: Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles, Vadose Zone Journal, 2010, Volume 9, pp. 1–9.
  35. AYAZ, H. - FAIZAL, M. - BOUAZZA, A.: Energy, economic, and carbon emission analysis of a residential building with an energy pile system, Renewable Energy, 220, 119712, 2024.
DOI: https://doi.org/10.2478/cee-2024-0076 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 1055 - 1064
Published on: Dec 17, 2024
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Juraj Slavkov, Dana Tomajková, Martin Brček, Lumír Miča, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.