Have a personal or library account? Click to login

Development of Higher Order Stiffened Shell Element (HOST9) for the Static Analysis of Stiffened Laminated Plates

Open Access
|Jun 2024

References

  1. MUKHOPADHYAY, M. (1981). Stiffened plate plane stress elements for the analysis of ships’ structures. Computers and Structures, 13(4), 563–573. https://doi.org/10.1016/0045-7949(81)90052-3.
  2. STRICKLIN, J. A., HAISLER, W. E., TISDALE, P. R., & GUNDERSON, R. (1969). A rapidly converging triangular plate element. AIAA Journal, 7(1), 180–181. https://doi.org/10.2514/3.5068
  3. ROSSOW, M. P., & IBRAHIMKHAIL, A. K. (1978). Constraint method analysis of stiffened plates. Computers and Structures, 8(1), 51–60. https://doi.org/10.1016/0045-7949(78)90159-1.
  4. VENKATESH, A., & RAO, K. P. (1982). A laminated anisotropic curved beam and shell stiffening finite element. Computers and Structures, 15(2), 197–201. https://doi.org/10.1016/0045-7949(82)90068-2.
  5. ALLMAN, D. J. (1984). A compatible triangular element including vertex rotations for plane elasticity analysis. Computers and Structures, 19(1–2), 1–8. https://doi.org/10.1016/0045-7949(84)90197-4
  6. SINHA, G., SHEIKH, A. H., & MUKHOPADHYAY, M. (1992). A new finite element model for the analysis of arbitrary stiffened shells. Finite Elements in Analysis and Design, 12(3–4), 241–271. https://doi.org/10.1016/0168-874X(92)90036-C.
  7. BISWAL, K. C., & GHOSH, A. K. (1994). Finite element analysis for stiffened laminated plates using higher order shear deformation theory. Computers and Structures, 53(1), 161–171. https://doi.org/10.1016/0045-7949(94)90139-2.
  8. COOK, R. D. (1994). Four-node “flat” shell element: Drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior. Computers and Structures, 50(4), 549–555. https://doi.org/10.1016/0045-7949(94)90025-6.
  9. SINHA, G., & MUKHOPADHYAY, M. (1994). Finite element free vibration analysis of stiffened shells. In Journal of Sound and Vibration (Vol. 171, Issue 4, pp. 529–548). https://doi.org/10.1006/jsvi.1994.1138.
  10. KANT, T., & KHARE, R. K. (1994). Finite element thermal stress analysis of composite laminates using a higher-order theory. Journal of Thermal Stresses, 17(2), 229–255. https://doi.org/10.1080/01495739408946257.
  11. KANT, T., & KHARE, R. K. (1997). A higher-order facet quadrilateral composite shell element. International Journal for Numerical Methods in Engineering, 40(24), 4477–4499. https://doi.org/10.1002/(sici)1097-0207(19971230)40:24<4477::aid-nme229>3.3.co;2-v.
  12. SAMANTA, A., & MUKHOPADHYAY, M. (1999). Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elements in Analysis and Design, 33(3), 187–208. https://doi.org/10.1016/S0168-874X(99)00022-0.
  13. SADEK, E. A., & TAWFIK, S. A. (2000). Finite element model for the analysis of stiffened laminated plates. Computers and Structures, 75(4), 369–383. https://doi.org/10.1016/S0045-7949(99)00094-2.
  14. PRUSTY, B. G., & SATSANGI, S. K. (2001). Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Engineering, 28(6), 621–638. https://doi.org/10.1016/S0029-8018(00)00021-4.
  15. PRUSTY, B. G., & SATSANGI, S. K. (2001). Finite element transient dynamic analysis of laminated stiffened shells. Journal of Sound and Vibration, 248(2), 215–233. https://doi.org/10.1006/jsvi.2001.3678.
  16. SAMANTA, A., & MUKHOPADHYAY, M. (2004). Free vibration analysis of stiffened shells by the finite element technique. European Journal of Mechanics, A/Solids, 23(1), 159–179. https://doi.org/10.1016/j.euromechsol.2003.11.001.
  17. BHAR, A., PHOENIX, S. S., & SATSANGI, S. K. (2010). Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective. Composite Structures, 92(2), 312–321. https://doi.org/10.1016/j.compstruct.2009.08.002.
  18. PUNERA, D., & KANT, T. (2017). Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models. Thin-Walled Structures, 119(July), 707–726. https://doi.org/10.1016/j.tws.2017.07.016.
  19. VEKSTEIN, G. (2020). - Theory of elasticity. In Physics of Continuous Media (pp. 234–259). https://doi.org/10.1201/b16095-7.
DOI: https://doi.org/10.2478/cee-2024-0018 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 217 - 232
Published on: Jun 26, 2024
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Karan Sheth, Rajendra Joshi, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.