Have a personal or library account? Click to login
Prediction of Geopolymer Concrete Compressive Strength Utilizing Artificial Neural Network and Nondestructive Testing Cover

Prediction of Geopolymer Concrete Compressive Strength Utilizing Artificial Neural Network and Nondestructive Testing

Open Access
|Dec 2022

References

  1. [1] RAMESH, G.: Geopolymer Concrete: A Review. Indian Journal of Structure Engineering, Vol.1, Iss. 2, 2021, pp. 5-8.10.35940/ijse.A1302.111221
  2. [2] VERMA, M. – DEV, N.: Effect of liquid to binder ratio and curing temperature on the engineering properties of the geopolymer concrete. Silicon, Vol.14, Iss. 4, 2022, pp. 1743-1757.10.1007/s12633-021-00985-w
  3. [3] DAVIDOVITS, J.: Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry, Vol.37, Iss. 8, 1991, pp. 1633-1656.10.1007/BF01912193
  4. [4] JAWAHAR, J. G. – LAVANYA, D. – SASHIDHAR, C.: Performance of fly ash and ggbs based geopolymer concrete in acid environment. Int. J. Res. Sci. Innovation, Vol.3, Iss. 8, 2016, pp. 101-104.
  5. [5] WORKMAN, G. L. - MOORE, P. O.: Nondestructive Testing Handbook, Third Edition: Volume 10, Overview. American Society of Nondestructive Testing, 2012, 594 p.
  6. [6] SHARIATI, M. – RAMLI-SULONG, N. H. – ARABNEJAD, M. M. – SHAFIGH, P. – SINAEI, H.: Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests. Scientific research and essays, Vol.6, Iss. 1, 2011, pp. 213-220.
  7. [7] JERGA, J. – KRAJČI, Ľ.: Damage in Concrete and its Detection by Use of Stress-Volumetric Strain Diagram. Civil and Environmental Engineering, Vol.10, Iss. 1, 2014, pp. 16-25.10.2478/cee-2014-0003
  8. [8] HELAL, J. – SOFI, M. – MENDIS, P.: Non-destructive testing of concrete: A review of methods. Electronic Journal of Structural Engineering, Vol.14, Iss. 1, 2015, pp. 97-105.10.56748/ejse.141931
  9. [9] PATIL, S. V. – CHABBI, S. – CHABBI, S. – PUDAKALKATTI, N. – PATIL, P.: Experimental Analysis of Non-Destructive Testing (NDT) on Ground Granulated Blast-Furnace Slag (GGBS) based Geopolymer Concrete. Int. J. Adv. Sci. Eng. Inf. Technol, Vol. 5, Iss. 4, 2019, pp. 1137-1145.10.29294/IJASE.5.4.2019.1137-1145
  10. [10] RAVALI, B. – KRISHNA, K. – KANTH, D. R. – CHARI, K. J. – PRABHU, S. V. – RAMESH, R.: Empirical Investigation on Compressive Strength of Geopolymer and Conventional Concretes by Nondestructive Method. Advances in Materials Science and Engineering, Vol. 2021, Iss. 1, 2021, pp. 1-10, doi: 10.1155/2021/9575964.
  11. [11] MARAS, M. M.: Characterization of performable geopolymer mortars for use as repair material. Structural Concrete, Vol. 22, Iss. 5, 2021, pp. 3173-3188.10.1002/suco.202100355
  12. [12] BREYSSE, D.: Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction and Building Materials, Vol. 33, Iss. 1, 2012, pp. 139-163.10.1016/j.conbuildmat.2011.12.103
  13. [13] BREYSSE, D. – KLYSZ, G. – DÉROBERT, X. – SIRIEIX, C. – LATASTE, J. F.: How to combine several non-destructive techniques for a better assessment of concrete structures. Cement and Concrete Research, Vol. 37, Iss. 6, 2008, pp. 783-93.10.1016/j.cemconres.2008.01.016
  14. [14] CAMARGO, M. V. – FERRARI, V. J.: Compressive strength and elasticity module of concrete using non-destructive techniques (NDT). Matéria, Vol. 26, Iss. 3, 2021. pp 11-26.
  15. [15] SREENIVASULU, C. – JAWAHAR, J. G. – SASHIDHAR, C.: Predicting compressive strength of geopolymer concrete using NDT techniques. Asian Journal of Civil Engineering, Vol. 19, Iss. 4, 2018, pp. 513-525.10.1007/s42107-018-0036-1
  16. [16] NOORI, A. S. – OWEED, K. M. – RAOUF, R. M. – ABDULREHMAN, M. A.: The relation between destructive and non-destructive tests of geopolymer concrete. Materials Today: Proceedings, Vol. 42, Iss. 1, 2021, pp. 2125-2133.10.1016/j.matpr.2020.12.296
  17. [17] KHAN, S. – RAHMANI, H. – SHAH, S. A. – BENNAMOUN, M.: A guide to convolutional neural networks for computer vision. Synthesis lectures on computer vision, Vol. 8, Iss. 1, 2018, pp. 1-207.10.1007/978-3-031-01821-3
  18. [18] ALMASAEID, H. H. – SALMAN, D. G.: Application of Artificial Neural Network to Predict the Properties of Permeable Concrete. Civil engineering and architecture, Vol. 10, Iss. 6, 2022, pp. 2292-2305.10.13189/cea.2022.100605
  19. [19] DEMIR, A.: Prediction of hybrid fibre-added concrete strength using artificial neural networks. Computers and Concrete, Vol. 15, Iss. 4, 2015, pp. 503-514.10.12989/cac.2015.15.4.503
  20. [20] ALMASAEID, H. H. – SULEIMAN, A. – ALAWNEH, R.: Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Studies in Construction Materials, Vol. 16, 2022, 16 p., doi: 10.1016/J.CSCM.2022.E01080.
  21. [21] KOMLOS, K. – POPOVICS, S. – NÜRNBERGEROVÁ, T. – BABAL, B. – POPOVICS, J. S.: Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cement and Concrete Composites, Vol. 18, Iss. 5, 1996, pp. 357-364.10.1016/0958-9465(96)00026-1
  22. [22] MALHOTRA, V. M. – CARINO, N. J.: Handbook on nondestructive testing of concrete. CRC press, 2003, 384 p.10.1201/9781420040050
  23. [23] NAJJAR, Y. M. – BASHEER, I.A. – MCREYNOLDS, R.: Neural modeling of Kansas soil swelling. Transportation Research Record, Vol. 1526, Iss. 1, 1996, pp. 14-19.10.1177/0361198196152600103
  24. [24] ALLOUZI, R. A. – ALMASAEID, H. H. – SALMAN, D. G. – ABENDEH, R. M. – RABAYAH, H. S.: Prediction of bond-slip behavior of circular/squared concrete-filled steel tubes. Buildings, Vol. 12, Iss. 4, 2022, pp. 456-477, doi: 10.3390/buildings12040456.
  25. [25] OLDEN, J. D. – JACKSON, D. A.: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological modelling, Vol. 154, Iss. 1-2, 2002, pp. 135-150.10.1016/S0304-3800(02)00064-9
DOI: https://doi.org/10.2478/cee-2022-0060 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 655 - 665
Published on: Dec 14, 2022
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Hatem Almasaeid, Abdelmajeed Alkasassbeh, Bilal Yasin, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.