Have a personal or library account? Click to login
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms Cover

Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms

Open Access
|Dec 2021

References

  1. [1] FRIMPONG, Y. - OLUWOYEB, J. - CRAWFORD, L.: Causes of delay and cost overruns in construction of groundwater projects in a developing country. International Journal of Project Management, Vol. 21, Iss. 5, 2003, pp. 321–326.10.1016/S0263-7863(02)00055-8
  2. [2] BILAL, M. - OYEDELE, L. - QADIR, J. - MUNIR, K. - AJAYI, S. - AKINADE, O. - OWOLABI, H. -ALAKA, H. - PASHA, M.: Big Data in the construction industry: A review of present status, opportunities, and future trend. Advanced Engineering Informatic, Vol. 30, Iss. 3, 2016, pp. 500–521.10.1016/j.aei.2016.07.001
  3. [3] CHAN, D. - KUMARASWAMY, M.: Compressing construction durations: lessons learned from Hong Kong building projects. International Journal of Project Management, Vol. 20, Iss.1, 2002, pp. 22–35.10.1016/S0263-7863(00)00032-6
  4. [4] ELAZOUNI, A. M.: Classifying construction contractors using unsupervised-learning neural networks. Journal of Construction Engineering and Management, Vol. 132, Iss.12, 2006, pp. 1242–1253.10.1061/(ASCE)0733-9364(2006)132:12(1242)
  5. [5] CHAO, L. C. - CHIEN, C. F.: Estimating project S-curves using polynomial function and neural networks. Journal of Construction Engineering and Management, Vol.135, Iss.3, 2009, pp. 169–177.10.1061/(ASCE)0733-9364(2009)135:3(169)
  6. [6] HERAVI, G. - ESLAMDOOST, E.: Applying artificial neural networks for measuring and predicting construction-labor productivity. Journal of Construction Engineering and Management, Vol. 141, Iss. 10, 2015, 04015032.10.1061/(ASCE)CO.1943-7862.0001006
  7. [7] DESAI, V. S. - JOSHI, S.: Application of decision tree technique to analyze construction project data. International Conference on Information Systems, Technology and Management ICISTM 2010: Information Systems, Technology and Management, pp. 304–313.10.1007/978-3-642-12035-0_30
  8. [8] CHI, S. - SUK, S. - KANG, Y. - MULVA, S.: Development of a data mining-based analysis framework for multi-attribute construction project information. Advanced Engineering Informatics, Vol. 26, Iss. 3, 2012, pp. 574–581.10.1016/j.aei.2012.03.005
  9. [9] CHEUNG, S. O. - YIU, T. W. - CHAN, H. W.: Exploring the potential for predicting project dispute resolution satisfaction using logistic regression. Journal of Construction Engineering and Management, Vol. 136, Iss. 5, 2010, pp. 508–517.10.1061/(ASCE)CO.1943-7862.0000157
  10. [10] ALZAHRANI, J. I. - EMSLEY, M. W.: The impact of contractors’ attributes on construction project success: A post construction evaluation. International Journal of Project Management, Vol. 31, Iss. 2, 2013, pp. 313–322.10.1016/j.ijproman.2012.06.006
  11. [11] JIANG, X. - MAHADEVAN, S.: Bayesian probabilistic inference for nonparametric damage detection of structures. Journal of Engineering Mechanics, Vol. 134, Iss. 10, 2008, pp. 820–831.10.1061/(ASCE)0733-9399(2008)134:10(820)
  12. [12] GONG, J. - CALDAS, C. H. - GORDON, C.: Learning and classifying actions of construction workers and equipment using Bag-of-VideoFeature-Words and Bayesian network models. Advanced Engineering Informatics, Vol. 25, Iss. 4, 2011, pp. 771–782.10.1016/j.aei.2011.06.002
  13. [13] CHENG, M. Y. - WU, Y. W.: Evolutionary support vector machine inference system for construction management. Automation in Construction, Vol. 18, Iss. 5, 2009, pp. 597–604.10.1016/j.autcon.2008.12.002
  14. [14] LAM, K. C. - LAM, M. C. K. - WANG, D.: Efficacy of using support vector machine in a contractor prequalification decision model. Journal of Computing in Civil Engineering, Vol. 24, Iss. 3, 2010, pp. 273–280.10.1061/(ASCE)CP.1943-5487.0000030
  15. [15] GONDIA, A. - SIAM, A. - EL-DAKHAKHNI, W. - NASSAR, A. H.: Machine Learning Algorithms for Construction Projects Delay Risk Prediction. Journal of Construction Engineering and Management, Vol. 146, Iss. 1, 2019, 04019085.10.1061/(ASCE)CO.1943-7862.0001736
  16. [16] Mc CALLUM, A.: Graphical Models, Lecture2: Bayesian Network Representation. Retrieved 22 October 2019.
  17. [17] GHAZVINI, K. – ZANDIEH, M. – VAFAMEHR, M.: Exploring KPIs Utilization Effects on Decision Making for the Architectural Design Process in Industrial Buildings. Civil and Environmental Engineering, Vol. 16, Iss. 1, 2020, pp. 198–209.10.2478/cee-2020-0019
  18. [18] ŠESTAKOVÁ, J. – IŽVOLT, L. – MEČÁR, M.: Degradation - Prediction Models of the Railway Track Quality. Civil and Environmental Engineering, Vol. 15, Iss. 2, 2019, pp. 115–124.10.2478/cee-2019-0015
  19. [19] NAJI, H. I. - AL-ZUBAIDI, E. A. - ALI, R. H.: Risk Response Failure in Construction Projects, 2018.
  20. [20] YASEEN, Z. M., et al.: Prediction of risk delay in construction projects using a hybrid artificial intelligence model. Sustainability, 2020, 12.4: 1514.10.3390/su12041514
DOI: https://doi.org/10.2478/cee-2021-0066 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 673 - 680
Published on: Dec 9, 2021
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Kadhim Raheim Erzaij, Abbas M. Burhan, Wadhah Amer Hatem, Rouwaida Hussein Ali, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.