Have a personal or library account? Click to login
Analysis of Dowel Action in Reinforced Concrete Beams with Shear Reinforcement Cover

Analysis of Dowel Action in Reinforced Concrete Beams with Shear Reinforcement

Open Access
|Dec 2021

References

  1. [1] KANI, G. N. J.: The riddle of shear failure and its solution. ACI Structural Journal, Vol. 61, Iss. 4, 1964, pp. 441–467.10.14359/7791
  2. [2] TAYLOR, H. P. J.: Investigation of the forces carried across cracks in Reinforced concrete beams in shear by interlock of aggregate. Technical report, 1970, CCA, London, pp. 42–47.
  3. [3] PAULAY, T. – LOEBER, P. J.: Shear transfer by aggregate interlock. ACI-Special Publication SP42, 1974, pp. 1–15.
  4. [4] WALRAVEN, J. C.: The influence depth on the shear strength of lightweight concrete beams without shear reinforcement. Stevin laboratory report, Delft University of Technology, Delft, 1987.
  5. [5] THOMAS, T. C. H.: Softened truss model theory for shear and torsion. ACI Structural Journal, Vol. 85, Iss. 6, 1988, pp. 624–635.10.14359/2740
  6. [6] REINECK, K.: Ultimate shear force of structural concrete members without transverse reinforcement derived from a mechanical model. ACI Structural Journal, Vol. 88, Iss. 5, 1991, pp. 592–602.10.14359/2784
  7. [7] SARKAR, S. – ADWAN, O. – BOSE, B.: Shear Stress Contributions and Failure Mechanisms of High Strength Reinforced Concrete Beams. Materials and Structures, Vol. 32, 1999, pp. 112–116.10.1007/BF02479437
  8. [8] JELIC, I. – PAVLOVIC, M. N. – KOTSOVOS, M. D.: A study of dowel action in reinforced concrete beams. Magazine of Concrete Research, Vol. 51, Iss. 2, 1999, pp. 131–141, doi: 10.1680/macr.1999.51.2.131.10.1680/macr.1999.51.2.131
  9. [9] ZARRAIS, P. D. – PAPADAKIS, G. CH.: Diagonal shear failure and size effect in RC beams without web reinforcement. Journal of Structural Engineering, Vol. 127, Iss. 7, 2001, pp. 733–742, doi:10.1061/(ASCE)0733-9445127:7(733).
  10. [10] PANDA, S. S. – APPARAO, G.: Study of Dowel Action in Reinforced Concrete Beam by Factorial Design of Experiment. ACI Structural Journal, Vol. 114, Iss. 6, 2017, pp. 1495–1505, DOI: 10.14359/51700831.10.14359/51700831
  11. [11] SINGH, B. – CHINTAKUNDI: An appraisal of dowel action in reinforced concrete beams. Proceedings of Structures and Buildings, Vol. 166, SB5, 2012.10.1680/stbu.10.00071
  12. [12] KIM, H. G - JEONG, C. Y. – KIM, M. J. – LEE, Y. J. – PARK, J. H. – KIM, K. H.: Prediction of shear strength of reinforced concrete beams without shear reinforcement considering bond action of longitudinal reinforcements. Advances in Structural Engineering, Vol. 21, Iss.1, 2018, pp. 30–45, doi: 10.1177/1369433217706778.10.1177/1369433217706778
  13. [13] NASSER, H. T. – MUSTAFA, R. A. - HAIDAR JABBAR, J. B.: Residual tensile stress estimation for shear strength of UHPC non prismatic beams. Civil and Environmental Engineering, Vol. 17, Iss. 1, 2021, pp. 164–177, doi: 10.2478/cee-2021-0017.10.2478/cee-2021-0017
  14. [14] IS: 456 2000: Indian Standard Plain and Reinforced Concrete - CODE OF PRACTICE (Fourth Revision).
  15. [15] IS: 10262 2019: Concrete Mix Proportioning- Guide Lines. (Second Revision).
DOI: https://doi.org/10.2478/cee-2021-0064 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 644 - 653
Published on: Dec 9, 2021
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Sreenivasa Prasad Joshi, P. Poluraju, Umesh K. Singh, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.