References
- [1] STATHOPOULOS, T.: Computational wind engineering: past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67–68, 1997, pp. 509–532, https://doi.org/10.1016/S0167-6105(97)00097-4.10.1016/S0167-6105(97)00097-4
- [2] BAKER, C. J.: Wind engineering - past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, 2007, pp. 843–870, https://doi.org/10.1016/j.jweia.2007.01.011.10.1016/j.jweia.2007.01.011
- [3] BLOCKEN, B.: 50 years of computational wind engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 129, 2014, pp. 69–102, https://doi.org/10.1016/j.jweia.2014.03.008.10.1016/j.jweia.2014.03.008
- [4] BLOCKEN, B.: Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, Vol. 91, 2015, pp. 219–245, https://doi.org/10.1016/j.buildenv.2015.02.015.10.1016/j.buildenv.2015.02.015
- [5] MOK, W. K. – CHOW, W. K.: Verification and validation in modeling fire by computational fluid dynamics. International Journal on Architectural Science, Vol. 5, Iss. 3, 2004, pp. 58–67, https://www.bse.polyu.edu.hk/researchCentre/Fire_Engineering/summary_of_output/journal/IJAS/V5/p.58-67.pdf.
- [6] CHARNEY, J. G.: The use of the primitive equations of motion in numerical prediction. Tellus, Vol. 7, 1955, pp. 22–26, https://doi.org/10.1111/j.2153-3490.1955.tb01138.x.10.1111/j.2153-3490.1955.tb01138.x
- [7] SMAGORINSKY, J.: On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Monthly Weather Review, Vol. 86, Iss. 12, 1958, pp. 457–466, https://doi.org/10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2.10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2
- [8] MURAKAMI, S. – MOCHIDA, A.: Past, present and future of CWE. The view from 1999. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, 1999, pp. 91–104.
- [9] MURAKAMI, S.: Overview of turbulence models applied in CWE–1997. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 74–76, 1998, pp. 1–24, https://doi.org/10.1016/S0167-6105(98)00004-X.10.1016/S0167-6105(98)00004-X
- [10] RICHARDS, P. J. – HOXEY, R. P.: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Computational Wind Engineering 1, Elsevier, 1993, pp. 145–153, https://doi.org/10.1016/B978-0-444-81688-7.50018-8.10.1016/B978-0-444-81688-7.50018-8
- [11] BLOCKEN, B. – STATHOPOULOS, T – CARMELIET, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, Vol. 41, Iss. 2, 2007, pp. 238–252, https://doi.org/10.1016/j.atmosenv.2006.08.019.10.1016/j.atmosenv.2006.08.019
- [12] FRANKE, J. – HELLSTEN, A. – SCHLÜNZEN, H. – CARISSIMO, B.: Best practice guideline for the CFD simulation of flows in the urban environment. COST Office, 2007.
- [13] YANG, Y. – GU, M. – CHEN, S. – JIN, X.: New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 97, Iss. 2, 2009, pp. 88–95, https://doi.org/10.1016/j.jweia.2008.12.001.10.1016/j.jweia.2008.12.001
- [14] MURAKAMI, S. – MOCHIDA, A.: Three-dimensional numerical simulation of turbulent flow around buildings using the k−ε turbulence model. Building and Environment, Vol. 24, Iss. 1, 1989, pp. 51–64, https://doi.org/10.1016/0360-1323(89)90016-4.10.1016/0360-1323(89)90016-4
- [15] MURAKAMI, S. – MOCHIDA, A. – HAYASHI, Y. – SAKAMOTO, S.: Numerical study on velocity-pressure field and wind forces for bluff bodies by κ-ϵ, ASM and LES. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 44, Iss. 1–3, 1992, pp. 2841–2852, https://doi.org/10.1016/0167-6105(92)90079-P.10.1016/0167-6105(92)90079-P
- [16] MURAKAMI, S.: Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 46–47, 1993, pp. 21–36, https://doi.org/10.1016/0167-6105(93)90112-2.10.1016/0167-6105(93)90112-2
- [17] JONES, W. P. – LAUNDER, B. E.: The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, Vol. 15, Iss. 2, 1972, pp. 301–314, https://doi.org/10.1016/0017-9310(72)90076-2.10.1016/0017-9310(72)90076-2
- [18] SHIH, T. – LIOU, W. W. – SHABBIR, A. – YANG, Z. – ZHU, J.: A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, Vol. 24, Iss. 3, 1995, pp. 227–238, https://doi.org/10.1016/0045-7930(94)00032-T.10.1016/0045-7930(94)00032-T
- [19] WILCOX, D. C.: Turbulence modeling for CFD. Vol. 2, 1998, pp. 103–217 La Canada, CA: DCW industries.
- [20] MENTER, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, Vol. 32, Iss. 8, 1994, pp. 1598–1605, https://doi.org/10.2514/3.12149.10.2514/3.12149
- [21] HUBOVÁ, O – LOBOTKA, P.: The Multipurpose New Wind Tunnel STU. Civil and Environmental Engineering, Vol. 10, Iss. 1, 2014, pp. 1–9, https://doi.org/10.2478/cee-2014-0001.10.2478/cee-2014-0001
- [22] STN EN 1991-1-4, Eurocode 1: Actions on structures. Part 1-4: General actions. Wind actions, Slovak Office of Standards, Metrology and Testing, 2007.
- [23] CERMAK, J. E. et al.: Wind Tunnel Studies of Buildings and Structures: ASCE Manuals and Reports on Engineering Practice, 1999, Virginia: American Society of Civil Engineers.
- [24] MEDVECKÁ, S – IVÁNKOVÁ, O. – MACÁK, M. – MICHALCOVÁ, V.: Determination of Pressure Coefficient for a High-rise Building with Atypical Ground Plan. Civil and Environmental Engineering, Vol. 14, Iss. 2, 2018, pp. 138–145, https://doi.org/10.2478/cee-2018-0018.10.2478/cee-2018-0018
- [25] TOMINAGA, Y. – MOCHIDA, A. – YOSHIE, R. – KATAOKA, H. – NOZU, T. – YOSHIKAWA, M. – SHIRASAWA, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, Iss. 10 - 11, 2008, pp. 1749–1761, https://doi.org/10.1016/j.jweia.2008.02.058.10.1016/j.jweia.2008.02.058
- [26] VAN HOOFF, T. – BLOCKEN, B.: Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the Amsterdam ArenA stadium. Environmental Modelling and Software, Vol. 25, Iss. 1, 2010, pp. 51–65, https://doi.org/10.1016/j.envsoft.2009.07.008.10.1016/j.envsoft.2009.07.008
- [27] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2020.
- [28] CHANG, J. C. – HANNA, S. R.: Air quality model performance evaluation. Meteorology and Atmospheric Physics, Vol. 87, 2004, pp. 167–196, https://doi.org/10.1007/s00703-003-0070-710.1007/s00703-003-0070-7
