Have a personal or library account? Click to login
Impact of Turbulence Models of Wind Pressure on two Buildings with Atypical Cross-Sections Cover

Impact of Turbulence Models of Wind Pressure on two Buildings with Atypical Cross-Sections

Open Access
|Dec 2021

References

  1. [1] STATHOPOULOS, T.: Computational wind engineering: past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67–68, 1997, pp. 509–532, https://doi.org/10.1016/S0167-6105(97)00097-4.10.1016/S0167-6105(97)00097-4
  2. [2] BAKER, C. J.: Wind engineering - past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, 2007, pp. 843–870, https://doi.org/10.1016/j.jweia.2007.01.011.10.1016/j.jweia.2007.01.011
  3. [3] BLOCKEN, B.: 50 years of computational wind engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 129, 2014, pp. 69–102, https://doi.org/10.1016/j.jweia.2014.03.008.10.1016/j.jweia.2014.03.008
  4. [4] BLOCKEN, B.: Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, Vol. 91, 2015, pp. 219–245, https://doi.org/10.1016/j.buildenv.2015.02.015.10.1016/j.buildenv.2015.02.015
  5. [5] MOK, W. K. – CHOW, W. K.: Verification and validation in modeling fire by computational fluid dynamics. International Journal on Architectural Science, Vol. 5, Iss. 3, 2004, pp. 58–67, https://www.bse.polyu.edu.hk/researchCentre/Fire_Engineering/summary_of_output/journal/IJAS/V5/p.58-67.pdf.
  6. [6] CHARNEY, J. G.: The use of the primitive equations of motion in numerical prediction. Tellus, Vol. 7, 1955, pp. 22–26, https://doi.org/10.1111/j.2153-3490.1955.tb01138.x.10.1111/j.2153-3490.1955.tb01138.x
  7. [7] SMAGORINSKY, J.: On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Monthly Weather Review, Vol. 86, Iss. 12, 1958, pp. 457–466, https://doi.org/10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2.10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2
  8. [8] MURAKAMI, S. – MOCHIDA, A.: Past, present and future of CWE. The view from 1999. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, 1999, pp. 91–104.
  9. [9] MURAKAMI, S.: Overview of turbulence models applied in CWE–1997. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 74–76, 1998, pp. 1–24, https://doi.org/10.1016/S0167-6105(98)00004-X.10.1016/S0167-6105(98)00004-X
  10. [10] RICHARDS, P. J. – HOXEY, R. P.: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Computational Wind Engineering 1, Elsevier, 1993, pp. 145–153, https://doi.org/10.1016/B978-0-444-81688-7.50018-8.10.1016/B978-0-444-81688-7.50018-8
  11. [11] BLOCKEN, B. – STATHOPOULOS, T – CARMELIET, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, Vol. 41, Iss. 2, 2007, pp. 238–252, https://doi.org/10.1016/j.atmosenv.2006.08.019.10.1016/j.atmosenv.2006.08.019
  12. [12] FRANKE, J. – HELLSTEN, A. – SCHLÜNZEN, H. – CARISSIMO, B.: Best practice guideline for the CFD simulation of flows in the urban environment. COST Office, 2007.
  13. [13] YANG, Y. – GU, M. – CHEN, S. – JIN, X.: New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 97, Iss. 2, 2009, pp. 88–95, https://doi.org/10.1016/j.jweia.2008.12.001.10.1016/j.jweia.2008.12.001
  14. [14] MURAKAMI, S. – MOCHIDA, A.: Three-dimensional numerical simulation of turbulent flow around buildings using the k−ε turbulence model. Building and Environment, Vol. 24, Iss. 1, 1989, pp. 51–64, https://doi.org/10.1016/0360-1323(89)90016-4.10.1016/0360-1323(89)90016-4
  15. [15] MURAKAMI, S. – MOCHIDA, A. – HAYASHI, Y. – SAKAMOTO, S.: Numerical study on velocity-pressure field and wind forces for bluff bodies by κ-ϵ, ASM and LES. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 44, Iss. 1–3, 1992, pp. 2841–2852, https://doi.org/10.1016/0167-6105(92)90079-P.10.1016/0167-6105(92)90079-P
  16. [16] MURAKAMI, S.: Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 46–47, 1993, pp. 21–36, https://doi.org/10.1016/0167-6105(93)90112-2.10.1016/0167-6105(93)90112-2
  17. [17] JONES, W. P. – LAUNDER, B. E.: The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, Vol. 15, Iss. 2, 1972, pp. 301–314, https://doi.org/10.1016/0017-9310(72)90076-2.10.1016/0017-9310(72)90076-2
  18. [18] SHIH, T. – LIOU, W. W. – SHABBIR, A. – YANG, Z. – ZHU, J.: A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, Vol. 24, Iss. 3, 1995, pp. 227–238, https://doi.org/10.1016/0045-7930(94)00032-T.10.1016/0045-7930(94)00032-T
  19. [19] WILCOX, D. C.: Turbulence modeling for CFD. Vol. 2, 1998, pp. 103–217 La Canada, CA: DCW industries.
  20. [20] MENTER, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, Vol. 32, Iss. 8, 1994, pp. 1598–1605, https://doi.org/10.2514/3.12149.10.2514/3.12149
  21. [21] HUBOVÁ, O – LOBOTKA, P.: The Multipurpose New Wind Tunnel STU. Civil and Environmental Engineering, Vol. 10, Iss. 1, 2014, pp. 1–9, https://doi.org/10.2478/cee-2014-0001.10.2478/cee-2014-0001
  22. [22] STN EN 1991-1-4, Eurocode 1: Actions on structures. Part 1-4: General actions. Wind actions, Slovak Office of Standards, Metrology and Testing, 2007.
  23. [23] CERMAK, J. E. et al.: Wind Tunnel Studies of Buildings and Structures: ASCE Manuals and Reports on Engineering Practice, 1999, Virginia: American Society of Civil Engineers.
  24. [24] MEDVECKÁ, S – IVÁNKOVÁ, O. – MACÁK, M. – MICHALCOVÁ, V.: Determination of Pressure Coefficient for a High-rise Building with Atypical Ground Plan. Civil and Environmental Engineering, Vol. 14, Iss. 2, 2018, pp. 138–145, https://doi.org/10.2478/cee-2018-0018.10.2478/cee-2018-0018
  25. [25] TOMINAGA, Y. – MOCHIDA, A. – YOSHIE, R. – KATAOKA, H. – NOZU, T. – YOSHIKAWA, M. – SHIRASAWA, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, Iss. 10 - 11, 2008, pp. 1749–1761, https://doi.org/10.1016/j.jweia.2008.02.058.10.1016/j.jweia.2008.02.058
  26. [26] VAN HOOFF, T. – BLOCKEN, B.: Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the Amsterdam ArenA stadium. Environmental Modelling and Software, Vol. 25, Iss. 1, 2010, pp. 51–65, https://doi.org/10.1016/j.envsoft.2009.07.008.10.1016/j.envsoft.2009.07.008
  27. [27] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2020.
  28. [28] CHANG, J. C. – HANNA, S. R.: Air quality model performance evaluation. Meteorology and Atmospheric Physics, Vol. 87, 2004, pp. 167–196, https://doi.org/10.1007/s00703-003-0070-710.1007/s00703-003-0070-7
DOI: https://doi.org/10.2478/cee-2021-0044 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 409 - 419
Published on: Dec 9, 2021
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Michal Franek, Marek Macák, Oľga Hubová, Oľga Ivánková, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.