Have a personal or library account? Click to login
Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software Cover

Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software

Open Access
|Dec 2020

References

  1. [1] ČSN 73 0540-2. Thermal protection of buildings - Part 2: Requirements. ÚNMZ; 2011.
  2. [2] CHWIEDUK, D.: Impact of solar energy on the energy balance of attic rooms in high latitude countries. Applied Thermal Engineering, Vol. 136, 2018, pp. 548–559, https://doi.org/10.1016/j.applthermaleng.2018.03.011.10.1016/j.applthermaleng.2018.03.011
  3. [3] REILLY, A. - KINNANE, O.: The impact of thermal mass on building energy consumption. Applied Energy, Vol. 198, 2017, pp. 108–121, https://doi.org/10.1016/j.apenergy.2017.04.024.10.1016/j.apenergy.2017.04.024
  4. [4] ALDAWOUD, A.: Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy and Buildings, Vol. 59, 2013, pp. 104–110, https://doi.org/10.1016/j.enbuild.2012.12.031.10.1016/j.enbuild.2012.12.031
  5. [5] LONG, L. - YE, H. - ZHANG, H. - GAO, Y.: Performance demonstration and simulation of thermochromic double glazing in building applications. Solar Energy, Vol. 120, 2015, pp. 55–64, https://doi.org/10.1016/j.solener.2015.07.025.10.1016/j.solener.2015.07.025
  6. [6] OLIVIERI, L. - CAAMAÑO-MARTÍN, E. - MORALEJO-VÁZQUEZ, F. J. - MARTÍN-CHIVELET, N. - OLIVIERI, F. - NEILA-GONZALEZ, F. J.: Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy, Vol. 76, 2014, pp. 572–583, https://doi.org/10.1016/j.energy.2014.08.054.10.1016/j.energy.2014.08.054
  7. [7] STEJSKALOVÁ, K. - OSTRÝ, M.: Influence of phase change materials on thermal stability in attic rooms. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Vol. 19, Iss. 6.2, 2019, pp. 183-189, https://doi.org/10.5593/sgem2019/6.2/S26.024.10.5593/sgem2019/6.2/S26.024
  8. [8] SAJJADIAN, S. M. - LEWIS, J. - SHARPLES, S.: The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates. Energy and Buildings, Vol. 93, 2015, pp. 83–89, https://doi.org/10.1016/j.enbuild.2015.02.029.10.1016/j.enbuild.2015.02.029
  9. [9] BEČKOVSKÝ, D. - OSTRÝ, M. - KALÁBOVÁ, T. - TICHOMIROV, V.: Thermal stability of attic spaces with integrated PCMs during the climatic year. Advanced Materials Research, Vol. 649, 2013, pp. 175–178, https://doi.org/10.4028/www.scientific.net/AMR.649.175.10.4028/www.scientific.net/AMR.649.175
  10. [10] AL-OBAIDI, K. M. - ISMAIL, M. - ABDUL RAHMAN, A. M.: Design and performance of a novel innovative roofing system for tropical landed houses. Energy Conversion and Management, Vol. 85, 2014, pp. 488–504, https://doi.org/10.1016/j.enconman.2014.05.101.10.1016/j.enconman.2014.05.101
  11. [11] PISELLO, A. L. - CASTALDO, V. L. - FABIANI, C. - COTANA, F.: Investigation on the effect of innovative cool tiles on local indoor thermal conditions: Finite element modeling and continuous monitoring. Building and Environment, Vol. 97, 2016, pp. 55–68, https://doi.org/10.1016/j.buildenv.2015.11.038.10.1016/j.buildenv.2015.11.038
  12. [12] AMORNLEETRAKUL, O. - PUANGSOMBUT, W. - HIRUNLABH, J.: Field investigation of the small house with the ventilated roof tiles. Advanced Materials Research, Vol. 931–932, 2014, pp. 1233–1237, https://doi.org/10.4028/www.scientific.net/AMR.931-932.1233.10.4028/www.scientific.net/AMR.931-932.1233
  13. [13] FERREIRA, M. - CORVACHO, H.: The effect of the use of radiant barriers in building roofs on summer comfort conditions – A case study. Energy and Buildings, Vol. 176, 2018, pp. 163–178, https://doi.org/10.1016/j.enbuild.2018.06.048.10.1016/j.enbuild.2018.06.048
  14. [14] LAPISA, R. - KARUDIN, A. - RIZAL, F. - KRISMADINATA - NASRUDDIN: Passive cooling strategies in roof design to improve the residential building thermal performance in tropical region. Asian Journal of Civil Engineering, Vol. 20, 2019, pp. 571–580, https://doi.org/10.1007/s42107-019-00125-1.10.1007/s42107-019-00125-1
  15. [15] NĚMEČEK, M. - KALOUSEK, M.: Quasistationary and dynamic simulation of summer overheating of passive timber house. Advanced Materials Research, Vol. 649, 2013, pp. 109–112, https://doi.org/10.4028/www.scientific.net/AMR.649.109.10.4028/www.scientific.net/AMR.649.109
  16. [16] MORÁVKOVÁ, N.: Výpočet letní tepelné stability místnosti klasickou metodou a s využitím dynamické simulace. Atelier-dek.cz, 2015, https://atelier-dek.cz/print/672.
  17. [17] CHOWDHURY, A. A. - RASUL, M. G. - KHAN, M. M. K.: Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate. Applied Energy, Vol. 85, Iss. 6, 2008, pp. 449–462, https://doi.org/10.1016/j.apenergy.2007.10.001.10.1016/j.apenergy.2007.10.001
  18. [18] ZHANG, A. - BOKEL, R. - van den DOBBELSTEEN, A. - SUN, Y. - HUANG, Q. - ZHANG, Q.: An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Building and Environment, Vol. 124, 2017, pp. 369-387, https://doi.org/10.1016/j.buildenv.2017.08.024.10.1016/j.buildenv.2017.08.024
  19. [19] STRACHAN, P. - SVEHLA, K. - HEUSLER, I. - KERSKEN, M.: Whole model empirical validation on a full-scale building. Journal of Building Performance Simulation, Vol. 9, Iss. 4, 2015, pp. 331-350, https://doi.org/10.1080/19401493.2015.1064480.10.1080/19401493.2015.1064480
  20. [20] SVOBODA, Z.: SIMULACE 2018. 1st edition, Praha: K-CAD spol. s r.o., 2018.
  21. [21] ČSN 73 0540-3. Thermal protection of buildings - Part 3: Design value quantities. ČNI, 2005.
  22. [22] ČSN 73 0540-4. Thermal protection of buildings - Part 4: Calculation methods. ČNI, 2005.
  23. [23] KLUBAL, T. - OSTRÝ, M.: Integration of PCMs and capillary radiant cooling/heating to ensure of thermal comfort. Advanced Materials Research, Vol. 1041, 2014, pp. 350–353, https://doi.org/10.4028/www.scientific.net/AMR.1041.350.10.4028/www.scientific.net/AMR.1041.350
  24. [24] SVOBODA, Z.: SIMULACE 2018. Version 2018.1 [software], http://kcad.cz/cz/uvod/.
  25. [25] DesignBuilder. Version 3.4.0.041 [software], https://designbuilder.co.uk/.
  26. [26] EN ISO 52016-1. Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures. ÚNMZ, 2019.
  27. [27] EnergyPlus. Documentation, https://energyplus.net/documentation; 2019.
  28. [28] TUBO. METEO DATA, http://tubo.fce.vutbr.cz/new/meteoExport.asp; 2019.
DOI: https://doi.org/10.2478/cee-2020-0036 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 360 - 369
Published on: Dec 16, 2020
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Kateřina Stejskalová, Nikola Vavřínová, published by University of Žilina
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.