Have a personal or library account? Click to login
Structural Steel Tensile Fracture-Inception Prevention Limit State and Ductility Criteria Cover

Structural Steel Tensile Fracture-Inception Prevention Limit State and Ductility Criteria

Open Access
|Jun 2020

References

  1. [1] Architectural Institute of Japan (AIJ): Fracture in steel structures during a severe earthquake (in Japanese). Tokyo, 1995.
  2. [2] JIA, L. - KUWAMURA, H.: Ductile Fracture Simulation of Structural Steels under Monotonic Tension. Journal of Structural Engineering, 04013115-1-12, 2013, DOI: 10.1061/(ASCE)ST.1943-541X.0000944.10.1061/(ASCE)ST.1943-541X.0000944
  3. [3] BORDIGNON, N. - PICCOLROAZ, A. - DAL CORSO, F. - BIGON, D.: Strain localization and shear band propagation in ductile materials. Frontiers in Materials, Article 22, 1, 2015.10.3389/fmats.2015.00022
  4. [4] RICE, J. R.: The Localization of Plastic Deformation in Theoretical and Applied Mechanics. Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, Delft, 1976, ed. W.T. Koiter, Vol. 1, North Holland Publishing Co., 1976, pp. 207-220.
  5. [5] SUN, X. - CHOI, K. S. - LIU, W. N. - KHALEEL, M. A.: Predicting failure modes and ductility of dual phase steels using plastic strain localization. International Journal of Plasticity, 25(10), 2009, pp. 1888-1909.10.1016/j.ijplas.2008.12.012
  6. [6] LI, Y. - LUO, M. - GERLACH, J. - WIERZBICKI, T.: Prediction of shear-induced fracture in sheet metal forming. Journal of Materials Processing Technology 210, 2010, pp. 1858–1869.10.1016/j.jmatprotec.2010.06.021
  7. [7] BAO, C. - FRANCOIS, M. - JONCOUR, L. Le.: A Closer Look at the Diffuse and Localised Necking of A Metallic Thin Sheet: Evolution of the Two Bands Pattern. An international journal for experimental mechanics. 52, 2016, pp. 244–260. doi: 10.1111/str.12184.10.1111/str.12184
  8. [8] EL-NAAMAN, S. A. - NIELSEN, K. L.: Observations on Mode I ductile tearing in sheet metals. European Journal of Mechanics A/Solids 42, 2013, pp. 54-62.10.1016/j.euromechsol.2013.04.007
  9. [9] ADEWOLE, K. K. - OLUTOGE, F. A.: Numerical prediction of structural steel flat and slant fracture modes using phenomenological shear fracture model. Journal of King Saud University-Engineering Sciences, 2017. doi.org/10.1016/j.jksues.2017.11.001.
  10. [10] BJÖRKLUND, O. - NILSSON, L.: Failure characteristics of a dual-phase steel sheet. Journal of Materials Processing Technology, 214, 2014, pp. 1190–1204.10.1016/j.jmatprotec.2014.01.004
  11. [11] HOOPUTRA, H. - GESE, H. - DELL, H. - WERNER, H. A.: Comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crashworthiness, 9(5), 2004, pp. 449–464.10.1533/ijcr.2004.0289
  12. [12] ARASARATNAM, P. - SIVAKUMARAN, K. S. - TAIT, M. J.: True Stress-True Strain Models for Structural Steel Elements. International Scholarly Research Network ISRN Civil Engineering, Vol. 2011, Article ID 656401, 2011. doi:10.5402/2011/656401.10.5402/2011/656401
  13. [13] SEIF, M. - MAIN, J. - WEIGAND, J. - MCALLISTER, T. P. - LUECKE, W.: Finite element modeling of structural steel component failure at elevated temperatures. Structures, 6, 2016, pp. 134–145.10.1016/j.istruc.2016.03.002
  14. [14] CABEZAS, E. E. -. CELENTANO, D. J.: Experimental and numerical analysis of the tensile test using sheet specimens. Mecanical computacional, 21, 2012, pp. 854-873.
  15. [15] ADEWOLE, K. K. - TEH, L. H.: Predicting steel tensile responses and fracture using the phenomenological ductile shear fracture model. American Society of Civil Engineering Journal of Materials in Civil Engineering, ASCE, 2017, doi: 10.1061/(ASCE)MT.1943-5533. 0002094, 2017.
  16. [16] BAI, Y. - WIERZBICKI, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24, 2008, pp. 1071–1096.10.1016/j.ijplas.2007.09.004
  17. [17] WEN, H. - MAHMOUD, H.: New model for ductile fracture of metal alloys. I: Monotonic loading. J. Eng. Mech., 10.1061/(ASCE) EM.1943-7889.0001009, 2015, pp. 1858–1869.
  18. [18] XUE, L.: Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech., 75(11), 2008, pp. 3343–3366.10.1016/j.engfracmech.2007.07.022
  19. [19] ROTH, C. C. - MOHR, D.: Ductile fracture experiments with locally proportional loading histories. International Journal of Plasticity, 79, 2016, pp. 328-354.10.1016/j.ijplas.2015.08.004
  20. [20] DANAS, K. - CASTANED, P. P.: Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int. J. Solids Struct., 49(11–12), 2012, pp. 1325–1342.10.1016/j.ijsolstr.2012.02.006
  21. [21] NAHSHON, K. - HUTCHINSON, J. W.: Modification of the Gurson model for shear fracture. European Journal of Mechanics and Solids, 27, 2008, pp. 1–17.10.1016/j.euromechsol.2007.08.002
  22. [22] [22] CHENG, L. - MONCHIET, V. - MORIN, L. - SAXCÉ, G. - KONDO, D.: An analytical Lode angle dependent damage model for ductile porous materials. Engineering Fracture Mechanics, 149, 2015, pp. 119–133.10.1016/j.engfracmech.2015.09.038
  23. [23] ROGERS, C. A. - HANCOCK, G. J.: Ductility of G550 Sheet Steels in Tension - Elongation Measurements and Perforated Tests. Research Report No R735, Department of Civil Engineering, The University of Sydney, Sydney NSW 2006, AUSTRALIA, 1996.
  24. [24] MOZE, P. - BEG, D. - LOPATI, J.: Net cross-section design resistance and local ductility of elements made of high strength steel. J. Constr. Steel Res., 63(11), 2007, pp. 1431–1441.10.1016/j.jcsr.2007.01.009
  25. [25] Simulia: Abaqus documentation, Abaqus Incorporated, Dassault Systemes, 2007.
  26. [26] ADEWOLE, K. K. - BULL, S. J.: Prediction of the fracture performance of defect-free steel bars for civil engineering applications using finite element simulation. Construction and Building Materials, 41, 2013, pp. 9–14.10.1016/j.conbuildmat.2012.11.089
  27. [27] ADEWOLE, K. K. - BULL, S. J.: Prediction of tensile and fracture properties of cracked carbon steel wire using finite element simulation. Journal of Civil Engineering and Management, 20(1), 2014, pp. 1-10.10.3846/13923730.2013.861862
  28. [28] ADEWOLE, K. K. - BULL, S. J.: Finite element failure analysis of wires for civil engineering applications with various crack-like laminations. Engineering failure analysis, 60, 2016, pp. 229-249.10.1016/j.engfailanal.2015.11.043
  29. [29] ADEWOLE, K. K.: Appropriate mesh design for predicting complete fracture behavior of wires for civil engineering applications. American Society of Civil Engineering Journal of Materials in Civil Engineering, ASCE, 26(12), 2014, pp. 04014095 - 04014096-2.10.1061/(ASCE)MT.1943-5533.0001064
DOI: https://doi.org/10.2478/cee-2020-0015 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 148 - 156
Published on: Jun 22, 2020
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Kazeem Kayode Adewole, Jean de Dieu Mutabaruka, published by University of Žilina
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.