[1] BAI, B. – PARK, D. W. – VO, H. – DESSOUKY, S. – IM, J.: Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers. Journal of Nanomaterials, Vol. 2015, Article ID 926809, 2015, https://doi.org/10.1155/2015/926809">https://doi.org/10.1155/2015/926809.10.1155/2015/926809
[2] MOUKOMEL, A. – MORIDPOUR, S.: Relationship between Asphalt Composition and Thermal Behaviour for Solar Energy Collection. Journal of Traffic and Logistics Engineering, Vol. 2, 2014, pp. 230 - 235, https://doi.org/10.12720/jtle.2.3.230-235">https://doi.org/10.12720/jtle.2.3.230-235.10.12720/jtle.2.3.230-235
[3] POLACCO, G. – FILIPPI, S. – MERUSI, F. – STASTNA, G.: A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, Vol. 224, 2015, pp. 72 - 112, https://doi.org/10.1016/j.cis.2015.07.010">https://doi.org/10.1016/j.cis.2015.07.010.10.1016/j.cis.2015.07.010
[4] YILDIRIM, Y.: Polymer modified asphalt binders. Construction and Building Materials, Vol. 21, 2007, pp. 66 - 72, https://doi.org/10.1016/j.conbuildmat.2005.07.007">https://doi.org/10.1016/j.conbuildmat.2005.07.007.10.1016/j.conbuildmat.2005.07.007
[6] PAN, P. – WU, S. – XIAO, Y. – LIU, G.: review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, Vol. 48, 2015, pp. 624 - 634, https://doi.org/10.1016/j.rser.2015.04.029">https://doi.org/10.1016/j.rser.2015.04.029.10.1016/j.rser.2015.04.029
[7] MARASTEANU, M. - LI, X. - CLYNE, T. - VOLLER, V. - TIMM, D. – NEWCOMB, D.: Low Temperature Cracking of Asphalt Concrete Pavements. University of Minnesota, 2004.
[9] CHADBOURN, B. - LUOMA, J. – NEWCOMB, D. – VOLLER, V.: Considerations of Hot-Mix Asphalt Thermal Properties during Compaction. Quality Management of Hot-Mix Asphalt, American Society for Testing and Materials, 1996.
[11] LUCA, J. - MRAWIRA, D.: New Measurements of Thermal Properties of Superpave Asphalt Concrete. Journal of Materials in Civil Engineering, Vol. 17, 2005, pp. 72 - 79, https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(72)">https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(72).10.1061/(ASCE)0899-1561(2005)17:1(72)
[12] MRAWIRA, M. - LUCA, J.: Effect of Aggregate Type, Gradation, and Compaction Level on Thermal Properties of Hot-Mix Asphalts. Canadian Journal of Civil Engineering, Vol. 33, 2006, pp. 1410 - 1414, https://doi.org/10.1139/l06-076">https://doi.org/10.1139/l06-076.10.1139/l06-076
[13] CÔTÉ, J. - GROSJEAN, V. - KONRAD, J.: Thermal Conductivity of Bitumen Concrete. Canadian Journal of Civil Engineering, Vol. 40, 2013, pp. 172 - 180, https://doi.org/10.1139/cjce-2012-0159">https://doi.org/10.1139/cjce-2012-0159.10.1139/cjce-2012-0159
[14] AIREY, G. – WILMOT, J. – GRENFELL, J. - IRVINE, D. - BARKER, I. – EL HARFI, J.: Rheology of polyacrylate binders produced via catalytic chain transfer polymerization as an alternative to bitumen in road pavement materials. European Polymer Journal, Vol. 47, 2011, pp. 1300 - 1314, https://doi.org/10.1016/j.eurpolymj.2011.03.002">https://doi.org/10.1016/j.eurpolymj.2011.03.002.10.1016/j.eurpolymj.2011.03.002
[17] GUSTAFSSON, S. E.: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments Vol. 62, 1991, pp. 797 - 804, 10.1063/1.1142087">http://dx.doi.org/10.1063/1.1142087.10.1063/1.1142087
[19] ZLATEVA, P. - PETKOVA-SLIPETS, R.: Comparative analysis of the thermal conductivity coefficient of environmentally friendly building materials. Acta Technica Corviniensis – Bulletin of Engineering, VIII, 2015, pp. 25 - 28.