Have a personal or library account? Click to login
Using of Aerogel to Improve Thermal Insulating Properties of Windows Cover

Using of Aerogel to Improve Thermal Insulating Properties of Windows

Open Access
|May 2018

References

  1. [1] CUCE, E. - CUCE, P. M. - WOOD, C. J. - RIFFAT, S. B.: Toward aerogel based thermal superinsulation in buildings. Renewable and Sustainable Energy Reviews, Vol. 34, 2014, pp. 273 - 299.10.1016/j.rser.2014.03.017
  2. [2] MONICA, C. - POPOVICI, C. - NELU-CRISTAN, C.: Experimental and numerical approach of the thermal conductivity of building façade. WSEAS Transactions on Heat and Mass Transfer, Vol. 5, Iss. 3, 2010, pp. 103 - 112.
  3. [3] IHARA, T. - GRYNNING, S. - GAO, T. - GUSTAVSEN, A. - JELLE, B. P.: Impact of convection on thermal performance of aerogel granulate glazing systems. Energy and Buildings, Vol. 88, 2015, pp. 165 - 173.10.1016/j.enbuild.2014.12.001
  4. [4] WITTWER, V.: Development of aerogel windows. Journal of Non-Crystalline Solids, Vol. 145, Iss. C, 1992, pp. 233 - 236.10.1016/S0022-3093(05)80462-4
  5. [5] BURATTI, C. - MORETTI, E.: Experimental performance evaluation of aerogel glazing systems. Applied Energy, Vol. 97, 2012, pp. 430 - 437.10.1016/j.apenergy.2011.12.055
  6. [6] GAO, T. - JELLE, B. P. - IHARA, T. - GUSTAVSEN, A.: Insulating glazing units with silica aerogel granules: The impact of particle size. Applied Energy, Vol. 128, 2014, pp. 27 - 34.10.1016/j.apenergy.2014.04.037
  7. [7] DRUEL L, L. – BARDL, R. – VORWERG, W. – BUDTOVA, T.: Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules, Vol. 18, Iss. 12, 2017, pp. 4232 - 4239, DOI: 10.1021/acs.biomac.7b01272.10.1021/acs.biomac.7b01272
  8. [8] KOEBEL, M. – RIGACCI, A. – ACHARD, P.: Aerogel-based thermal superinsulation: An overview. Journal of Sol-Gel Science and Technology, Vol. 63, Iss. 3, 2012, pp. 315 - 339, DOI: 10.1007/s10971-012-2792-9.10.1007/s10971-012-2792-9
  9. [9] SWIMM, K., - REICHENAUER, G. – VIDI, S. – EBERT, H.-P.: Impact of thermal coupling effects of the effective thermal conductivity of aerogels. Journal of Sol-Gel Science and Technology, Vol. 84, Iss. 3, 2017, pp. 466 - 474, DOI: 10.1007/s10971-017-4437-5.10.1007/s10971-017-4437-5
  10. [10] PISAL, A. A. – VENKATESWARA RAO, A.: Development of hedrophobic and optically transparent monolithic silica aerogels for window panel application. Journal of Porous Materials, Vol. 24, Iss. 3, 2017, pp. 685 - 695, DOI: 10.1007/s10934-016-0305-x.10.1007/s10934-016-0305-x
  11. [11] MORETTI, E. – ZINZI, M. – CARNIELO, E. – MERLI, F.: Advanced Polycarbonate Transparent Systems with Aerogel: Preliminary Characterization of Optical and Thermal Properties. Energy Procedia, Vol. 113, 2017, pp. 9 - 16, DOI: 10.1016/j.egypro.2017.04.003.10.1016/j.egypro.2017.04.003
  12. [12] LV, Y. – HUANG, R. – WU, H. – WANG, S. – ZHOU, X.: Study on Thermal and Optical Properties and Influence Factors of Aerogel Glazing Units. Procedia Engineering. Vol. 205, 2017, pp. 3228 - 3234, DOI: 10.1016/j.proeng.2017.10.295.10.1016/j.proeng.2017.10.295
  13. [13] SCHULTZ, J. M. – JENSEN, K. I. – KRISTIANSEN, F. H.: Super insulating aerogel glazing. Solar Energy Materials and Solar Cells, Vol. 89, Iss. 2 - 3, 2005, pp. 275 - 285, DOI: 10.1016/j.solmat.2005.01.016.10.1016/j.solmat.2005.01.016
  14. [14] ROOS, A. - KARLSSON, B.: Optical and thermal characterization of multiple glazed windows with low U-values. Solar Energy, Vol. 52, Iss. 4, 1994, pp. 315 - 325.10.1016/0038-092X(94)90138-4
  15. [15] ORAVEC, P.: Windows in buildings – diagnostic of selected properties after time of using. Advanced Materials Research, Vol. 899, 2014, pp. 184 - 187.10.4028/www.scientific.net/AMR.899.184
  16. [16] KAMENICKY, L. - PALKO, M. - PUSKAR, A.: Diffuse characteristics of window frame gasket system. Advanced Materials Research, Vol. 855, 2013, pp. 134 - 137.10.4028/www.scientific.net/AMR.855.134
  17. [17] PALKOVA, A. - PALKO, M.: Thermal and moisture problems of wooden windows. Advanced Materials Research, Vol. 899, 2014, pp. 180 - 183.10.4028/www.scientific.net/AMR.899.180
  18. [18] KAMENICKY, L.: Wooden window structure and its thermos-humid mode. Advanced Materials Research, Vol. 899, 2014, pp. 188 - 192.10.4028/www.scientific.net/AMR.899.188
  19. [19] KAMENICKY, L. – PALKO, M. – PUSKAR, A. Diffuse Characteristics of Window Frame Gasket System. Advanced Materials Research, Vol. 888, 2013, pp. 134 - 137, DOI: 10.4028/www.scientific.net/AMR.855.134. 21.10.4028/www.scientific.net/AMR.855.134.21
  20. [20] PALKO, M. - PALKOVA, A. - PUSKAR, A.: Analysis of water vapour condensation in gap between casement and window frame of wooden windows. Wood Research, Vol. 57, Iss. 4, 2012, pp. 581 - 590.
  21. [21] LAHUTA, H. - SKOTNICOVA, I.: Dynamic thermal performance of building structures in experimental lightweight timber-frame passive house. SGEM 2013, Bulgaria, 2013, pp. 403 - 410, DOI: 10.5593/SGEM2013/BF6/S26.008.10.5593/SGEM2013/BF6/S26.008
DOI: https://doi.org/10.2478/cee-2018-0001 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 2 - 11
Published on: May 30, 2018
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Denisa Valachova, Nada Zdrazilova, Vladan Panovec, Iveta Skotnicova, published by University of Žilina
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.