Have a personal or library account? Click to login
Definition of Areas with High and Low Environmental Pollution by Passive Bio-Monitoring Cover

Definition of Areas with High and Low Environmental Pollution by Passive Bio-Monitoring

Open Access
|Dec 2025

References

  1. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: A review. Front Public Health. 2020;8:14. DOI: 10.3389/fpubh.2020.00014.
  2. Chen F, Zhang W, Bani Mfarrej MF, Saleem MH, Khan KA, Ma J, et al. Breathing in danger: Understanding the multifaceted impact of air pollution on health impacts. Ecotoxicol Environ Saf. 2024;280:116532. DOI: 10.1016/j.ecoenv.2024.116532.
  3. Nakhle P, Stamos I, Proietti P, Siragusa A. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Environ Sustain Indic. 2024;21:100332. DOI: 10.1016/j.indic.2023.100332.
  4. Ogidi OI, Onwuagba CG, Richard-Nwachukwu N. Biomonitoring tools, techniques and approaches for environmental assessments. In: Biomonitoring of Pollutants in the Global South. Chapter 7. 2024. DOI: 10.1007/978-981-97-1658-6_7.
  5. Wacławek M, Świsłowski P, Rajfur M. The biological monitoring as a source of information on environmental pollution with heavy metals. Chem Didact Ecol Metrol. 2022;27(1-2):53-78. DOI: 10.2478/cdem-2022-0006.
  6. Taurozzi D, Gallitelli L, Cesarini G, Romano S, Orsini M, Scalici M. Passive biomonitoring of airborne microplastics using lichens: A comparison between urban, natural and protected environments. Environ Int. 2024;187:108707. DOI: 10.1016/j.envint.2024.108707.
  7. Isinkaralar O, Świsłowski P, Isinkaralar K, Rajfur M. Moss as a passive biomonitoring tool for the atmospheric deposition and spatial distribution pattern of toxic metals in an industrial city. Environ Monit Assess. 2024;196:513. DOI: 10.1007/s10661-024-12696-x.
  8. Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28(2):163-72. DOI: 10.2478/eces-2021-0012.
  9. Zafarullah H, Huque AS. Climate change, regulatory policies and regional cooperation in South Asia. Public Adm Policy Asia-Pac J. 2018;21(1):22-35. DOI: 10.1108/PAP-06-2018-001.
  10. Dineva S, Veleva-Doneva P, Zlatev Z. Urban environmental quality assessment by spectral characteristics of Mulberry (Morus L.) leaves. Environments. 2021;8(9):87. DOI: 10.3390/environments8090087.
  11. Nebesnyi VB, Grodzynska GA. An assessment of industrial pollution of Kyiv with the spectral reflection of Tilia cordata (Tiliaceae) leaves. Ukr Bot J. 2015;72(2):116-21. DOI: 10.15407/ukrbotj72.02.116.
  12. Khavanin Zadeh AR, Veroustraete F, Buytaert JAN, Dirckx J, Samson R. Assessing urban habitat quality using spectral characteristics of Tilia leaves. Environ Pollut. 2013;178:7-14. DOI: 10.1016/j.envpol.2013.02.021
  13. Mielke MS, Schaffer B, Schilling AC. Evaluation of reflectance spectroscopy indices for estimation of chlorophyll content in leaves of a tropical tree species. Photosynthetica. 2012;50(3):343-52. DOI: 10.1007/s11099-012-0038-2
  14. Zhang Y, Wang C, Huang J, Wang F, Huang R, Lin H, et al. Exploring the optical properties of leaf photosynthetic and photo-protective pigments in vivo based on the separation of spectral overlapping. Remote Sens. 2020;12(21):3615. DOI: 10.3390/rs12213615.
  15. Yang L, Meng L, Gao H, Wang J, Zhao C, Guo M, et al. Heavy metal detection in mulberry leaves: Laser-induced breakdown spectroscopy data. Data Brief. 2020;33:106483. DOI: 10.1016/j.dib.2020.106483.
  16. Yu K, Van Geel M, Ceulemans T, Geerts W, Ramos M, Serafim C, et al. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environ Pollut. 2018;243(Part B):1912-22. DOI: 10.1016/j.envpol.2018.09.053.
  17. Andrianjara I, Cabassa C, Lata J-C, Hansart A, Raynaud X, Renard M, et al. Characterization of stress indicators in Tilia cordata Mill. as early and long-term stress markers for water availability and trace element contamination in urban environments. Ecol Indic. 2024;158:111296. DOI: 10.1016/j.ecolind.2023.111296.
  18. Onwudiegwu CA, Sylva L, Aigberua AO, Hait M. Biological Monitoring of Air Pollutants. In: Izah SC, Ogwu MC, Shahsavani A, editors. Air Pollutants in the Context of One Health. The Handbook of Environmental Chemistry. Cham: Springer; 2024. vol. 134. DOI: 10.1007/698_2024_1139.
  19. Carlan I, Sandric I. The use of a field spectrometer and satellite imagery for identifying stressed vegetation in Bucharest, Romania. Int J Conserv Sci. 2020;11(1):125-32. Available from: https://www.proquest.com/scholarly-journals/use-field-spectrometer-satellite%20imagery/docview/2706213924/se-2.
  20. Huang L, Yang L, Meng L, Wang J, Li S, Fu X, et al. Potential of visible and near-infrared hyperspectral imaging for detection of Diaphania pyloalis larvae and damage on mulberry leaves. Sensors. 2018;18(7):2077. DOI: 10.3390/s18072077.
  21. Sultanova R, Martynova M, Odintsov G, Mukhamadiev D. Optical parameters of the Tilia cordata Mill. assimilation apparatus. Math Model Eng Probl. 2022;9(5):1187-91. DOI: 10.18280/mmep.090504.
  22. Ustin SL, Jacquemoud S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. In: Cavender-Bares J, Gamon JA, Townsend PA, editors. Remote Sensing of Plant Biodiversity. Cham: Springer; 2020. DOI: 10.1007/978-3-030-33157-3_14.
  23. EPA. Environments and Contaminants - Criteria Air Pollutants. Available from: https://www.epa.gov/americaschildrenenvironment/environments-and-contaminants-criteria-air-pollutants.
  24. Lark R. Acceptable VOC Levels in PPM. Available from: https://environment.co/acceptable-voc-levels-ppm
  25. Bright RM, Lund MT. CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: A critical review. Atmos Chem Phys. 2021;21(12):9887-907. DOI: 10.5194/acp-21-9887-2021.
  26. Anderson K. Low-Emission Zone (LEZ): meaning, zones and restrictions. Available from: https://greenly.earth/en-us/blog/ecology-news/low-emission-zone-lez-meaning-zones-and-restrictions.
  27. James A. Can “Blue Zones” be a solution to environmental injustice? Available from: https://www.ehn.org/blue-zones-environmental-2658467593/what-are-blue-zones (accessed 2024 Jul 12).
  28. Latif SD, Almalayih M, Yafouz A, Ahmed AN, Zaini N, Irwan D, et al. Prediction of atmospheric carbon monoxide concentration utilizing different machine learning algorithms: A case study in Kuala Lumpur, Malaysia. Environ Technol Innov. 2023;32:103387. DOI: 10.1016/j.eti.2023.103387.
  29. Zlatev Z, Todorov A, Karadzhova D, Vasilev M, Veleva P. Evaluating the performance and practicality of a multi-parameter assessment system with design, comparative analysis, and future directions. Sustainability. 2024;16:4124:1-27. DOI: 10.3390/su16104124.
  30. Wyman C, Sloan P-P, Shirley P. Simple Analytic Approximations to the CIE XYZ Color Matching Functions. J Comput Graph Tech. 2013;2(2):1-11. Available from: https://jcgt.org/published/0002/02/01/.
  31. Atanassova S, Nikolov P, Valchev N, Masheva S, Yorgov D. Early detection of powdery mildew (Podosphaera xanthii) on cucumber leaves based on visible and near-infrared spectroscopy. AIP Conf Proc. 2019;2075:160014. DOI: 10.1063/1.5091341.
  32. Cermakova I, Komarkova J, Sedlak P. Calculation of Visible Spectral Indices from UAV-Based Data: Small Water Bodies Monitoring. In: 2019 14th Iberian Conference on Information Systems and Technologies CISTI; 2019. p. 1-5. DOI: 10.23919/CISTI.2019.8760609.
  33. Mladenov M. Model-based approach for assessment of freshness and safety of meat and dairy products using a simple method for hyperspectral analysis. J Food Nutr Res. 2020;59(2):108-19. Available from: https://www.vup.sk/en/download.php?bulID=2059.
  34. Silhouette plot. Available from: https://www.mathworks.com/help/stats/silhouette.html.
  35. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley; 1990. DOI: 10.1002/9780470316801.
  36. Correa-Ochoa M, Mejia-Sepulveda J, Saldarriaga-Molina J, Castro-Jiménez C, Aguiar-Gil D. Evaluation of air pollution tolerance index and anticipated performance index of six plant species, in an urban tropical valley: Medellin, Colombia. Environ Sci Pollut Res. 2021; 29(5):7952-71. DOI: 10.1007/s11356-021-16037-0.
  37. Konopka Z, Świsłowski P, Rajfur M. Biomonitoring of atmospheric aerosol with the use of Apis mellifera and Pleurozium schreberi. Chem Didact Ecol Metrol. 2019;24(1-2):107-16. DOI: 10.2478/cdem-2019-0009.
  38. Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25(4):557-68. DOI: 10.1515/eces-2018-0037.
  39. Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.
  40. Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28(2):163-72. DOI: 10.2478/eces-2021-0012.
DOI: https://doi.org/10.2478/cdem-2025-0007 | Journal eISSN: 2084-4506 | Journal ISSN: 1640-9019
Language: English
Page range: 67 - 86
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2025 Dzheni Karadzhova, Miroslav Vasilev, Petya Veleva, Zlatin Zlatev, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.