References
- Jin X, Tong X, Hua S, Xu Y. Ecological and health risk assessment of soil heavy metal contamination along National Highway 107 in China. Ecol Chem Eng S. 2024;31(2):155-75. DOI: 10.2478/eces-2024-0011.
- Zein R, Wulandari S, Ramadhani P, Deswati D. Utilisation of shrimp shell as a low-cost biosorbent for the adsorption of methylene blue dyes. Ecol Chem Eng S. 2024;31(1):63-73. DOI: 10.2478/eces-2024-0005.
- Prasad MNV, Elchuri SV. Environmental contaminants of emerging concern: Occurrence and remediation. Chem Didact Ecol Metrol. 2023;28(1-2):57-77. DOI: 10.2478/cdem-2023-0004.
- Wacławek M, Świsłowski P, Rajfur M. The biological monitoring as a source of information on environmental pollution with heavy metals. Chem Didact Ecol Metrol. 2022;27(1-2):53-78. DOI: 10.2478/cdem-2022-0006.
- Kozłowski R, Strzyż M. Heavy metals accumulation in silver fir needles in Swietokrzyski National Park. Chem Didact Ecol Metrol. 2021;26(1-2):65-72. DOI: 10.2478/cdem-2021-0005.
- Dąbek L, Picheta-Oleś A, Szeląg B, Szulżyk-Cieplak J, Łagód G. Modeling and optimization of pollutants removal during simultaneous adsorption onto activated carbon with advanced oxidation in aqueous environment. Materials. 2020;13(19):4220. DOI: 10.3390/ma13194220.
- Kujawska J, Wojtaś E, Zaburko J, Kamińska I, Czerpak J, Jamka K, et al. Concentration and risk assessment of metals in snow cover monitoring in urban and rural areas. Ann Agric Environ Med. 2024;31(2):205-11. DOI: 10.26444/aaem/190317.
- Kujawska J, Duda-Saternus S, Szulżyk-Cieplak J, Zaburko J, Piłat-Rożek M, Jamka K, et al. Comparison of leaching behaviour of heavy metals from sediments sampled in sewer systems - environmental and public health aspect. Ann Agric Environ Med. 2023;30(4):677-84. DOI: 10.26444/aaem/175553.
- Duda-Saternus S, Kujawska J, Wojtaś E, Kozłowska A, Jamka K, Szeląg B, et al. A simplified method for determining potential heavy metal leached from sediments ofstormwater and combined sewer systems -importance for public health. Ann Agric Environ Med. 2023;30(3):455-61. DOI: 10.26444/aaem/170099.
- Qasem NAA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water. 2021;4(1):36. DOI: 10.1038/s41545-021-00127-0.
- Eftekhari M, Gheibi M, Azizi-Toupkanloo H, Hossein-Abadi Z, Khraisheh M, Fathollahi-Fard AM, et al. Statistical optimization, soft computing prediction, mechanistic and empirical evaluation for fundamental appraisal of copper, lead and malachite green adsorption. J Ind Inf Integr. 2021;23:100219. DOI: 10.1016/j.jii.2021.100219.
- Fiyadh SS, Alardhi SM, Omar MA, Aljumaily MM, Saadi MAA, Fayaed SS, et al. A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon. 2023;9(4). DOI: 10.1016/j.heliyon.2023.e15455.
- González Costa JJ, Reigosa MJ, Matías JM, Covelo EF. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model. Sci Total Environ. 2017;593-594:508-22. DOI: 10.1016/j.scitotenv.2017.03.195.
- Moradpour S, Entezari M, Ayoubi S, Karimi A, Naimi S. Digital exploration of selected heavy metals using Random Forest and a set of environmental covariates at the watershed scale. J Hazard Mater. 2023;455:131609. DOI: 10.1016/j.jhazmat.2023.131609.
- Liang C, Zhang Z, Li Y, Wang Y, He M, Xia F, et al. Simulation, prediction and optimization for synthesis and heavy metals adsorption of schwertmannite by machine learning. Environ Res. 2025;265:120471. DOI: 10.1016/j.envres.2024.120471.
- Leng L, Zheng H, Shen T, Wu Z, Xiong T, Liu S, et al. Engineering biochar from biomass pyrolysis for effective adsorption of heavy metal: An innovative machine learning approach. Sep Purif Technol. 2025;361:131592. DOI: 10.1016/j.seppur.2025.131592.
- Wang J, Liu X, Li W, Tu Y, Deng H, Du J. Deciphering heavy metal adsorption capacity of soil based on its physicochemical properties and adsorption reaction time using machine learning. J Environ Chem Eng. 2025;13(3):116913. DOI: 10.1016/j.jece.2025.116913.
- Yaseen ZM, Alhalimi FL. Heavy metal adsorption efficiency prediction using biochar properties: a comparative analysis for ensemble machine learning models. Sci Rep. 2025;15(1):13434. DOI: 10.1038/s41598-025-96271-5.
- Han Y, Dai W, Zhou L, Guo L, Liu M, Wang D, et al. Predicting the adsorption capacity of geopolymers for heavy metals in solution based on machine learning. J Environ Chem Eng. 2025;13(2):115978. DOI: 10.1016/j.jece.2025.115978.
- Hassan R, Behtouei Z, Baghban A. Advanced machine learning for precise prediction of biochar’s heavy metal sorption efficiency. J Hazard Mater Adv. 2025;18:100739. DOI: 10.1016/j.hazadv.2025.100739.
- Tank S, Pandey M, Rath JJ, Bandyopadhyay M. Base modified mesoporous silica adsorbent for heavy metal adsorption: Optimization of adsorption efficiency with machine learning algorithms. Hybrid Adv. 2025;10:100489. DOI: 10.1016/j.hybadv.2025.100489.
- Xu M, Zhang L, Yuan L, Ji C, Zhang Y, Kong D, et al. Machine learning-assisted adsorption capacity prediction of ion exchange or chelate resin for heavy metals in aqueous solutions: External validation via multi-factor experiments. Sep Purif Technol. 2025;368:133019. DOI: 10.1016/j.seppur.2025.133019.
- Wang Z, Wang B, Liu Q, Huo X, Chang T, Sun J, et al. Predicting heavy metals adsorption on microplastics and unraveling the adsorption mechanism with machine learning methods. Surf Interfaces. 2025;72:107101. DOI: 10.1016/j.surfin.2025.107101.
- Gheibi M, Wacławek S, Leo CP, Sadr S, Behzadian K. Dynamic modelling, simulation, and sensitive analysis of lead removal in a fixed-bed adsorption column using waste-based materials. IOP Conf Ser Earth Environ Sci. 2024;1368(1):012009. DOI: 10.1088/1755-1315/1368/1/012009.
- Gheibi M, Masoomi SR, Eftekhari M, Akrami M, Palušák M, Silvestri D, et al. Heavy metals adsorption using CDW adsorbents: A sustainable path for water purification. J Hazard Mater Adv. 2025;20:100883. DOI: 10.1016/j.hazadv.2025.100883.
- Michalak A, Świsłowski P, Rajfur M. The assessment of heavy metal contamination of the cultivated soils in the Odra River Floodplain. Chem Didact Ecol Metrol. 2021;26(1-2):55-64. DOI: 10.2478/cdem-2021-0004.
- Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993;88(424):1273-83. DOI: 10.1080/01621459.1993.10476408.
- Veyrat-Charvillon N, Standaert FX. Mutual information analysis: How, when and why? In: Clavier C, Gaj K, editors. Cryptographic Hardware and Embedded Systems - CHES 2009. Berlin, Heidelberg: Springer; 2009; 429-43. DOI: 10.1007/978-3-642-04138-9_30.
- Al-Degs YS, Abu-El-Halawa R, Abu-Alrub SS. Analyzing adsorption data of erythrosine dye using principal component analysis. Chem Eng J. 2012;191:185-94. DOI: 10.1016/j.cej.2012.03.002.
- Ciaburro G. MATLAB for Machine Learning. Packt Publishing Ltd; 2017;374. ISBN: 9781835087695.
- Sivanandam SN, Deepa SN. Genetic Algorithm Implementation Using Matlab. In: Sivanandam SN, Deepa SN, editors. Introduction to Genetic Algorithms. Berlin, Heidelberg: Springer; 2008;211-62. DOI: 10.1007/978-3-540-73190-0_8.
- Genetic Algorithm Options - MATLAB & Simulink. Available from: https://www.mathworks.com/help/gads/genetic-algorithm-options.html.
- Kakhki RM, Mohammadpoor M, Faridi R, Bahadori M. The development of an artificial neural network -genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur-nitrogen co-doped Fe2O3 nanostructure surface. RSC Adv. 2020;10(10):5951-60. DOI: 10.1039/C9RA10349J.
- Long R, Xia X, Zhao Y, Li S, Liu Z, Liu W. Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning. iScience. 2021;24(1):101914. DOI: 10.1016/j.isci.2020.101914.
- Etxegarai M, Camps M, Echeverria L, Ribalta M, Bonada F, Domingo X, et al. Virtual Sensors for Smart Data Generation and Processing in AI-Driven Industrial Applications. In: Industry 40 - Perspectives and Applications. IntechOpen; 2022. DOI: 10.5772/intechopen.106988.
- Zhao S, Guo J, Tang Y, Zhou Y. Applications of machine learning in heavy metal adsorption modeling: A review. Sep Purif Technol. 2025;377:134168. DOI: 10.1016/j.seppur.2025.134168.
- Fan M, Li T, Hu J, Cao R, Wei X, Shi X, et al. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials. 2017;10(5):544. DOI: 10.3390/ma10050544.
- Halder G, Dhawane S, Barai PK, Das A. Optimizing chromium(VI) adsorption onto superheated steam activated granular carbon through response surface methodology and artificial neural network. Environ Prog Sustain Energy. 2015;34(3):638-47. DOI: 10.1002/ep.12028.
- Mandal S, Mahapatra SS, Sahu MK, Patel RK. Artificial neural network modelling of As(III) removal from water by novel hybrid material. Process Saf Environ Prot. 2015;93:249-64. DOI: 10.1016/j.psep.2014.02.016.
- Macena M, Pereira H, Cruz-Lopes L, Grosche L, Esteves B. Competitive adsorption of metal ions by lignocellulosic materials: A review of applications, mechanisms and influencing factors. Separations. 2025:16;12(3):70. DOI: 10.3390/separations12030070.
- Huang Z, Liu K, Duan J, Wang Q. A review of waste-containing building materials: Characterization of the heavy metal. Constr Build Mater. 2021;309:125107. DOI: 10.1016/j.conbuildmat.2021.125107.
- González-Fernández RA, Leite da Silva AM, Resende LC, Schilling MT. Composite systems reliability evaluation based on Monte Carlo simulation and cross-entropy methods. IEEE Trans Power Syst. 2013;28(4):4598-606. DOI: 10.1109/TPWRS.2013.2267154.
- Lin W, Jing L, Zhu Z, Cai Q, Zhang B. Removal of heavy metals from mining wastewater by micellar-enhanced ultrafiltration (MEUF): Experimental investigation and Monte Carlo-based artificial neural network modeling. Water Air Soil Pollut. 2017;228(6):206. DOI: 10.1007/s11270-017-3386-5.
- Pathania S, Daksa S, Srinivasan S, Savarimuthu SJX. Automation of adsorption processes using AI: Recent trends and prospects. In: Artificial Intelligence for Multimedia Information Processing. CRC Press; 2024. DOI: 10.1201/9781003405436-16.
- Wilson D, del Valle M, Alegret S, Valderrama C, Florido A. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network. Talanta. 2013;114:17-24. DOI: 10.1016/j.talanta.2013.03.066.
- Major Š, Hubálovská M. Virtual laboratories in the teaching of mechanical technology. Chem Didact Ecol Metrol. 2023;28(1-2):135-55. DOI: 10.2478/cdem-2023-0008.