Have a personal or library account? Click to login
Using the Raspberry Pi Microcomputers in STEM Education in Technically Oriented High Schools Cover

Using the Raspberry Pi Microcomputers in STEM Education in Technically Oriented High Schools

Open Access
|Jan 2022

References

  1. [l] Mohr-Schroeder MJ, Cavalcanti M, Blyman K. STEM Education: Understanding the Changing Landscape. In: Sahin A, editor. A Practice-based Model of STEM Teaching: Stem Students on the Stage (SOS)™. Sense Publishers, Netherlands; 2015. ISBN: 9789463000192. DOI: 10.1007/978-94-6300-019-2_1.10.1007/978-94-6300-019-2_1
  2. Bybee R. Advancing STEM education: a 2020 vision. Technol Eng Teacher. 2010:30-5. DOI: 10.1007/s40692-015-0041-2.10.1007/s40692-015-0041-2
  3. English LD. STEM education K-12: perspectives on integration. Int J STEM Education. 2016;3:3. DOI: 10.1186/s40594-016-0036-1.10.1186/s40594-016-0036-1
  4. Becker K, Park K. Effects of integrative approaches among science, technology, engineering and mathematics (STEM) subjects on students’ learning: a preliminary meta-analysis. J STEM Education Innovations Res. 2011;12(5-6):23-37. DOI: 10.12691/education-2-10-4.10.12691/education-2-10-4
  5. Asghar A, Ellington R, Rice E, Johnson F, Prime G. Supporting STEM education in secondary science contexts. Interdisciplinary J Problem-Based Learning. 2012;6(2):85-125. DOI: 10.7771/1541-5015.1349.10.7771/1541-5015.1349
  6. Falloon G, Hatzigianni M, Bower M, Forbes A, Stevenson M. Understanding K-12 STEM education: A framework for developing STEM literacy. J Sci Education Technol. 2020;29:369-85. DOI: 10.1007/s10956-020-09823-x.10.1007/s10956-020-09823-x
  7. Simpson A, Bouhafa Y. Youths’ and adults’ identity in STEM: A systematic literature review. J STEM Education Res. 2020;3:167-94. DOI: 10.1007/s41979-020-00034-y.10.1007/s41979-020-00034-y
  8. Li Y. Int J STEM Education - a platform to promote STEM education and research worldwide. IJ STEM Ed. 2014:1. DOI: 10.1186/2196-7822-1-1.10.1186/2196-7822-1-1
  9. Paul KM, Maltese AV, Valdivia SD. Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students. IJ STEM Ed. 2020;7:45. DOI: 10.1186/s40594-020-00243-2.10.1186/s40594-020-00243-2
  10. Ng O, Shi L, Ting F. Exploring differences in primary students’ geometry learning outcomes in two technology-enhanced environments: dynamic geometry and 3D printing. IJ STEM Ed. 2020;7:50. DOI: 10.1186/s40594-020-00244-1.10.1186/s40594-020-00244-1
  11. Malcom SM, Chubin DE, Jesse JK. Standing Our Ground: A Guidebook for STEM Educators in the Post-Michigan Era. Am Associat Advancement Sci; 2004. ISBN: 0871686996.
  12. Kramarová L, Prokša M. Pupils’ preconceptions about heat, temperature and energy. Chem Didact Ecol Metrol. 2020;25(1-2):79-91. DOI: 10.2478/cdem-2020-0005.10.2478/cdem-2020-0005
  13. Rusek M, Vojíř K, Šubová Š. Lower-secondary school chemistry textbooks’ didactic equipment. Chem Didact Ecol Metrol. 2020;25(1-2):69-77. DOI: 10.2478/cdem-2020-0004.10.2478/cdem-2020-0004
  14. Rusek M, Chroustová K, Bílek M, Skřehot PA, Hon Z. Conditions for experimental activities at elementary and high schools from chemistry teachers’ point of view. Chem Didact Ecol Metrol. 2020;25(1-2):93-100. DOI: 10.2478/cdem-2020-0006.10.2478/cdem-2020-0006
  15. Simeonov V. Didactical principles of environmental monitoring. Chem Didact Ecol Metrol. 2019;24(1-2):99-106. DOI: 10.2478/cdem-2019-0008.10.2478/cdem-2019-0008
  16. Frontasyeva M, Kamnev A. Ecology and society. Impacted ecosystems. Part I. Chem Didact Ecol Metrol. 2018; 23(1-2):7-29. DOI: 10.1515/cdem-2018-0001.10.1515/cdem-2018-0001
  17. Krzeszowski Ś. Evaluation of the usefulness of selected computer programs in the context of educating students of the environmental engineering. Chem Didact Ecol Metrol. 2016;20(1-2):31-7. DOI: 10.1515/cdem-2015-0003.10.1515/cdem-2015-0003
  18. Tišnovský P. Legendární školní mikropočítač IQ-151 [Legendary school microcomputer IQ-151]. Available from: https://www.root.cz/clanky/legendarni-skolni-mikropocitac-iq-151/
  19. Bulena B. Československé osmibitové počítače [Czechoslovak 8-bit computers]. Available from: http://studium.chytrak.cz/nostalgia/cs_obit_pc.pdf.
  20. Krejčířová M. “Domácí počítače” nedávné minulosti [”Home computers” of the recent past]. Available from: https://www.fi.muni.cz/usr/jkucera/pv109/xkrejcir.htm.
  21. Winfrey J. Physics I Laboratory Manual with PASCO Capstone Supporting Software. Amazon.com; 2015. ISBN: 9781508778790.
  22. Suca L. Physics4AL: Mechanics Lab Manual, UCLA Department of Physics and Astronomy; 2013. Available from: https://www.scribd.com/document/266462644/Manual-de-pasco-Capstone-experiment-mechanic-1
  23. Subhash G, Ridgeway S. Mechanics of Materials Laboratory Course. Morgan Claypool 2018. Available from: https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781681733340_sample.pdf.10.1007/978-3-031-79721-7
  24. Al Faruque A, Cooke HG. Impact of Upgrading Equipment for Strength of Materials Labs on Student Perceptions, Motivation, and Learning, RIT Scholar Works. Rochester Institute of Technology; 2015. Available from: https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1870&context=other.
  25. Instruction Manual 012-13762D: Materials Testing Machine ME-8236, Part of the Comprehensive Materials Testing System ME-8244. Available from: https://usermanual.wiki/Pasco-Specialty-And-Mfg/PascoSpecialtyAndMfgMaterialsTestingMachineMe8236UsersManual516790.1189831755.pdf
  26. Barrows HS. Problem-based learning in medicine and beyond: A brief overview. New Directions Teaching Learning. 2006;(68):3-12. DOI: 10.1002/tl.37219966804.10.1002/tl.37219966804
  27. Mehalik M, Doppelt Y, Schunn CD. Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Res J Eng Education. 2008;97:71-85. DOI: 10.1002/j.2168-9830.2008.tb00955.x.10.1002/j.2168-9830.2008.tb00955.x
  28. Morrison GR. Designing Effective Instruction, 6th Edition. John Wiley Sons; 2010. ISBN: 0470074264.
  29. Doppelt Y, Mehalik MM, Schunn CD, Silk E, Krysinski D. Engagement and achievements: A case study of design-based learning in a science context. J Technol Education. 2008;19(2). Available from: https://www.researchgate.net/publication/229088018_Engagement_and_Achievements_A_Case_Study_of_Design-Based_Learning_in_a_Science_Context.
  30. Burdick A. Design without Designers. Materials of the Conference on the Future of Art and Design Education in the 21st century held at the University of Brighton, May 22, 2009. Available from: http://anneburdick.com/Design-wo-Designers/Burdick_Design_wo_Designers.pdf.
  31. Halliday D, Resnick R, Walker J. Fundamental of Physics. John Wiley Sons Inc, USA; 2013. ISBN: 9781118230725.
  32. Hibbeler RC. Mechanics of Materials in SI Edition. Pearson Education Limited, USA; 2017. ISBN: 9781292178202.
  33. Zachariadou K, Yiasemides K, Trougkakos N. A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells. Eur J Phys. 2012;33:1599-610. DOI: 10.1088/0143-0807/33/6/1599.10.1088/0143-0807/33/6/1599
  34. Tinker RF. Microcomputer-based Labs: Educational Research and Standards. Springer; 1992. ISBN: 9783540615583.
  35. Nayyar A, Puri V. Raspberry Pi - A small, powerful, cost effective and efficient form factor computer: A review. Int J Adv Res Computer Sci Software Eng (IJARCSSE). 2015;5:720-37. Available from: https://www.researchgate.net/publication/305668622_Raspberry_Pi-A_Small_Powerful_Cost_Effective_and_Efficient_Form_Factor_Computer_A_Review.
  36. Chaudhari H. Raspberry Pi Technology: A Review. Int J Innovative Emerging Res Eng. 2015;2(3):83-7. Available from: http://www.ijiere.com/FinalPaper/FinalPaper201532874333741.pdf.
  37. Cloutier MF, Paradis C, Weaver VM. A Raspberry Pi cluster instrumented for fine-grained power measurement. Electronics. 2016;5(4):61. DOI: 10.3390/electronics5040061.10.3390/electronics5040061
  38. Zhong X, Liang Y. Raspberry Pi: An effective vehicle in teaching the internet of things in computer science and engineering. Electronics. 2016;5(3):56. DOI: 10.3390/electronics5030056.10.3390/electronics5030056
  39. Reck RM, Sreenivas RS. Developing an affordable and portable control systems laboratory kit with a Raspberry Pi. Electronics. 2016;5(3):36. DOI: 10.3390/electronics5030036.10.3390/electronics5030036
  40. Kölling M. Educational Programming on the Raspberry Pi. Electronics. 2016;5(3):33. DOI: 10.3390/electronics5030033.10.3390/electronics5030033
  41. Karvinen T, Karvinen K, Valtokari V. Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi. Maker Media, Inc; USA. 2014. ISBN-13: 9781449368104.
  42. Karvinen T, Karvinen K, Valtokari V. Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi, Make Community, LLC; USA, 2014. ISBN-13: 9781449367084.
  43. Gil-Domenech D, Berbegal-Mirabent J. Stimulating students’ engagement in mathematics courses in non-STEM academic programmes: A game-based learning. Innov Educ Teach Int. 2019;56:57-65. DOI: 10.1080/14703297.2017.1330159.10.1080/14703297.2017.1330159
  44. Saienki N, Olizko Y, Arshad M. Development of tasks with art elements for teaching engineers in English for specific purposes classroom. Int J Emerg Technol Learn. 2019;14:4-16. DOI: 10.3991/ijet.v14i23.11955.10.3991/ijet.v14i23.11955
  45. Mwenda AB, Sullivan M, Grand A. How do Australian universities market STEM courses in YouTube videos? J Mark High Educ. 2019;29:191-208. DOI: 10.1080/08841241.2019.1633004.10.1080/08841241.2019.1633004
  46. Ferrada C, Díaz-Levicoy D, Salgado-Orellana N, Parraguez R. Propuesta de actividades STEM con Bee-bot en matematica [Proposals of mathematical activities with a Bee-bot child robot based on STEM education]. Edma 0-6 Educ Math Infanc. 2019;8:33-43. Available from: https://www.researchgate.net/publication/334593444_Propuesta_de_actividades_STEM_con_Bee-bot_en_matematica.10.24197/edmain.1.2019.33-43
  47. Sigal M, Jacobs S. Preparing for university: An applied analysis on the Efficacy of 4U and university level preparatory STEM courses. Can J Scholarsh Teach Learn. 2019;10:1-23. DOI: 10.5206/cjsotl-rcacea.2019.1.7996.10.5206/cjsotl-rcacea.2019.1.7996
  48. Pyraz GT, Kumpete EG. An example of STEM education in Turkey and distance education for sustainable STEM learning. J Qual Res Educ. 2019;7:1345-64. DOI: 10.14689/issn.2148-624.1.7c.4s.2m.10.14689/issn.2148-624.1.7c.4s.2m
  49. Hinojo-Lucena FJ, Dúo-Terrón P, Navas-Parejo MR, Rodríguez-Jiménez C, Moreno-Guerrero AJ. Scientific performance and mapping of the term STEM in education on the Web of Science. Sustainability. 2020;12:2279. DOI: 10.3390/su12062279.10.3390/su12062279
  50. Rodríguez-García AM, López J, Agreda M, Moreno-Guerrero AJ. Productive, structural and dynamic study of the concept of sustainability in the educational field. Sustainability. 2019;11:5613. DOI: 10.3390/su11205613.10.3390/su11205613
  51. Mendes JV, Oliveira GR, De Souza LM. The G-index: A sustainability reporting assessment tool. Int J Sustain Dev World Ecol. 2019;26:428-38. DOI: 10.1080/13504509.2019.1589595.10.1080/13504509.2019.1589595
DOI: https://doi.org/10.2478/cdem-2021-0006 | Journal eISSN: 2084-4506 | Journal ISSN: 1640-9019
Language: English
Page range: 73 - 88
Published on: Jan 21, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2022 Štěpán Major, Marie Hubálovská, Maria Wacławek, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.