Have a personal or library account? Click to login
Determining Cellulolytic Activity of Microorganisms Cover
By: Katarzyna Grata  
Open Access
|Jan 2021

References

  1. [1] Poszytek K. Mikrobiologiczna utylizacja celulozy (Microbial cellulose utilization). Post Mikrobiol. 2016;55:2:132-46. Available from: http://pm.microbiology.pl/web/archiwum/vol5522016132.pdf.
  2. [2] Eveleigh DE, Mandels M, Andreotti R, Roche Ch. Measurement of saccharifying cellulase. Biotechnol Biofuels. 2009;2:21. DOI: 10.1186/1754-6834-2-21.10.1186/1754-6834-2-21
  3. [3] Reddy KV, Vijayalashmi T, Ranjit P, Raju MN. Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Braz Arch Biol Technol. 2017;60:e17160226. DOI: 10.1590/1678-4324-2017160226.10.1590/1678-4324-2017160226
  4. [4] Juturu V, Chuan Wu J. Microbial cellulases: Engineering, production and applications. Renew Sust Energy Rev. 2014;33:188-203. DOI: 10.1016/j.rser.2014.01.077.10.1016/j.rser.2014.01.077
  5. [5] Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45. DOI: 10.1186/1754-6834-5-45.10.1186/1754-6834-5-45
  6. [6] Lynd LR, Weimer PJ, van Zyl W, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Molecular Biol Rev. 2002;66:3:506-77. DOI: 10.1128/MMBR.66.3.506-577.2002.10.1128/MMBR.66.3.506-577.2002
  7. [7] Shuangqi T, Zhenyu W, Ziluan F, Lili Z, Jichang W. Determination methods of cellulase activity. Afr J Biotech. 2011;10:37:7122-5. DOI: 10.5897/AJB10.2243.
  8. [8] Singhania RR. Cellulolytic Enzymes. Chapter 20. In: Singh P, Pandey A, editors. Biotechnology for Agro-Industrial Residues Utilisation. Utilisation of Agro-Residues. Dordrecht: Springer; 2009; 372-81. ISBN: 9781402099427. DOI: 10.1007/978-1-4020-9942-7_20.10.1007/978-1-4020-9942-7_20
  9. [9] Bayer E, Chanzy, Lamed R, Shoham Y. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 1998;8:548-557. DOI: 10.1016/S0959-440x(98)80143-7.10.1016/S0959-440X(98)80143-7
  10. [10] Kale RA, Zanwar PH. Isolation and screening of cellulolytic fungi. IOSR J Biotech Biochem. 2016;2:6:57-61. Available from: http://www.iosrjournals.org/iosr-jbb/papers/Vol2-issue6/Version-2/H0206025761.pdf.
  11. [11] Ordaz-Díaz LA, Rojas-Contreras JA, Flores-Vichi F, Flores-Villegas MY, Álvarez-Álvarez C, Velasco-Vázquez P, et al. Quantification of endoglucanase activity based on carboxymethyl cellulose in four fungi isolated from an aerated lagoon in a pulp and paper mill. BioResour. 2016; 11:3:7781-9. DOI: 10.15376/biores.11.3.7781-7789.10.15376/biores.11.3.7781-7789
  12. [12] Carvalho Dos Santos T, Filho Ga, Riany De Brito A, Pires AJ, Ferreira Bonomo RB, Franco M. Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear. Rev Caatinga Mossoró. 2016;29:1:222-33. DOI: 10.1590/1983-21252016v29n126rc.10.1590/1983-21252016v29n126rc
  13. [13] Kadarmoidheen M, Saranraj P, Stella D. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Inter J Appl Microbiol Sci. 2012;1:2:13-23. https://www.academia.edu/3878309/Effect_of_cellulolytic_fungi_for_the_degradation_of_cellulosic_agricultural_wastes.
  14. [14] El-Hadi AA, Abu El-Nour S, Hammad A, Kamel Z, Anwar M. Optimization of cultural and nutritional conditionsfor carboxymethylcellulase production by Aspergillus hortai. J Radiation Res Appl Sci. 2014;7:1:23-8. DOI: 10.1016/j.jrras.2013.11.003.10.1016/j.jrras.2013.11.003
  15. [15] Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008;57:503-7. DOI: 10.1007/s00284-008-9276-8.10.1007/s00284-008-9276-818810533
  16. [16] Tamada M, Kasai N, Kaetsu I. Estimation of cellulase activity based on glucose productivity. Biotechnol Bioeng. 1988;32:7:920-2. DOI: 10.1002/bit.260320712.10.1002/bit.26032071218587805
  17. [17] Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004:88:7:832-7. DOI: 10.1002/bit.20286.10.1002/bit.2028615459905
  18. [18] Dąbkowska K, Mech M, Kopeć K, Pilarek M. Enzymatic activity of some industrially-applied cellulolytic enzyme preparations. Ecol Chem Eng S. 2017:24:1:9-18. DOI: 10.1515/eces-2017-0001.10.1515/eces-2017-0001
  19. [19] Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microboil Molec Biol Rev. 2002;66:506-77. DOI: 10.1128/MMBR.66.3.506-577.2002.10.1128/MMBR.66.3.506-577.200212079112209002
  20. [20] Maki M, Leung KT, Qin W. The prospects of cellulose - producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 2009;5:500-16. DOI: 10.7150/ijbs.5.500.10.7150/ijbs.5.500272644719680472
  21. [21] Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:1:47-53. http://www.ijet.feiic.org/journals/J-2006-V1005.pdf
  22. [22] Lugani Y, Singla R, Sooch BS. Optimization of cellulase production from newly isolated Bacillus sp. Bioprocess Biotech. 2015;5:11:264. DOI: 10.4172/2155-9821.1000264.10.4172/2155-9821.1000264
  23. [23] Manfredi AP, Pisa1 JH, Valdeón DH, Perotti NI, Martínez MA. Synergistic effect of simple sugars and carboxymethylcellulose on the production of a cellulolytic cocktail from Bacillus sp. AR03 and enzyme activity characterization. Appl Biochem Biotechnol. 2016;179:16-32. DOI: 10.1007/s12010-015-1976-5.10.1007/s12010-015-1976-526797928
  24. [24] Karim A, Nawaz MA, Aman A, Ali Ul Qader S. Hyper production of cellulose degrading endo (1,4) β-D-glucanase from Bacillus licheniformis KIBGE-IB2. J Radiation Res Appl Sci. 2014;7:1:23-8. DOI: 10.1016/j.jrras.2013.11.003.10.1016/j.jrras.2013.11.003
  25. [25] Grata K, Rombel-Bryzek A, Ziembik Z. Bacillus subtilis BS-2 and peppermint oil as biocontrol agents against Botrytis cinerea. Ecol Chem Eng S. 2019;26:3:597-607. DOI: 10.1515/eces-2019-0044.10.1515/eces-2019-0044
  26. [26] Liang Y, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, screening and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Resh Int. 2014;1-13. ID 512497. DOI: 10.1155/2014/512497.10.1155/2014/512497409049925050355
  27. [27] Irfan M, Safdar A, Syed Q, Nadeem M. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk J Biochem. 2012;37:3:287-93. DOI: 0.5505/tjb.2012.09709.10.5505/tjb.2012.09709
  28. [28] Poulsen H, Willink FW, Ingvorsen K. Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch Microbiol. 2016;198:725-35. DOI: 10.1007/s00203-016-1230-8.10.1007/s00203-016-1230-8499523827154570
  29. [29] Berlin A. No arriers to cellulose breakdown. Science. 2013;342:6165;1454-6. DOI: 10.1126/science.1247697.10.1126/science.124769724357305
  30. [30] Andlar M, Rezic T, Marđetko N, Kracher D, Ludwig R, Santek B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci. 2018;18:768-78. DOI: 10.1002/elsc.201800039.10.1002/elsc.201800039699925432624871
  31. [31] Zhang XZ, Zhang YHP. Cellulases: charecteristics, sources, production, and applications. In: Yang ST, El-Enshasy HA, Thongchual N. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Hoboken. New Jersey: John Wiley Sons; 2013; 131-46. ISBN: 9780470541951.10.1002/9781118642047
  32. [32] Yin LJ, Lin HH, Xiao ZR. Purification and characterization of a cellulase from Bacillus subtilis YI1. J Marine Sci Technol. 2010:18:3:466-71. https://jmst.ntou.edu.tw/marine/18-3/466-471.pdf10.51400/2709-6998.1895
  33. [33] Thapa S, Mishra J, Arora N, Mishra P, Li H, O’Hair J, et al. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol. 2020;19:621-48. DOI: 10.1007/s11157-020-09536-y.10.1007/s11157-020-09536-y
  34. [34] Orji FA, Dike EN, Lawal AK, Sadiq AO, Suberu Y, Famotemi AC, et al. Properties of Bacillus species cellulase produced using cellulose from brewers spent grain (BSG) as substrate. Adv Biosci Biotechnol. 2016;7:142-8. DOI: 10.4236/abb.2016.73013.10.4236/abb.2016.73013
  35. [35] Chantarasiri A. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian J Aquatic Res. 2015;41(3):257-64. DOI: 10.1016/j.ejar.2015.08.003.10.1016/j.ejar.2015.08.003
  36. [36] Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M. Two new cellulolytic fungal species isolated from a 19th-century art collection. Scientific Reports. 2018;8:7492. DOI: 10.1038/s41598-018-24934-7.10.1038/s41598-018-24934-7594589329748544
  37. [37] Sunitha VH, Nirmala Dev D, Srinivas C. Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agri Sci. 2013;9(1):1-9. DOI: 10.5829/idosi.wjas.2013.9.1.72148.
  38. [38] Gohel HR, Contractor CN, Ghosh SK, Braganza VJ. A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxymethylcellulose (CMC) agar plates. Int J Curr Microbiol App Sci. 2014;3(5):261-6. https://www.ijcmas.com/vol-3-5/Hardik%20R.%20Gohel,%20et%20al.pdf.
  39. [39] Oliveira LRC, Barbosa JB, Martins MLL, Martins MA. Extracellular production of avicelase by the thermophilic soil bacterium Bacillus sp. SMIA-2. Acta Scien. Biol Sci. 2014;36(2);215-22. DOI: 10.4025/actascibiolsci.v36i2.17827.10.4025/actascibiolsci.v36i2.17827
  40. [40] Kim YK, Lee SC, Cho YY, Oh HJ, Ko YH. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiol. 2012;650563. DOI: 10.5402/2012/650563.10.5402/2012/650563365849823724328
  41. [41] Ferbiyanto A, Rusmana I, Raffiudin R. Charectarization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J Life Sci. 2015:22(5):197-200. DOI: 10.1016/j.hjb.2015.07.001.10.1016/j.hjb.2015.07.001
  42. [42] Florencio C, Couri S, Farinas C. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012:793708-15. DOI: 10.1155/2012/793708.10.1155/2012/793708351483423227312
  43. [43] Ray RR. Microbial avicelase: an overview. Bull Environ Pharmacol Life Sci. 2015;4(4):3-13. http://bepls.com/march_2015/2.pdf.
  44. [44] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31(3):426-8. DOI: 10.1021/ac60147a030.10.1021/ac60147a030
  45. [45] Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257-68. DOI: 10.1351/pac198759020257.10.1351/pac198759020257
  46. [46] Marsden WL, Gray PP, Nippard GJ, Quinlan MR. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J Chem Technol Biotechnol. 1982;32:7-12. DOI: 10.1002/jctb.5030320744.10.1002/jctb.5030320744
  47. [47] McKee L. Measuring enzyme kinetics of glycoside hydrolases using the 3,5-dinitrosalicylic acid assay. In: Wade Abbott D, Lammerts van Bueren A, editors. Protein-Carbohydrate Interactions. Methods and Protocols. New York, NY: Humana Press; 2017; 27-36. DOI: 10.1007/978-1-4939-6899-2.10.1007/978-1-4939-6899-2
  48. [48] Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of activity and stability. Chem Eng J. 2011;171(2):669-73. DOI: 10.1016/j.cej.2011.04.039.10.1016/j.cej.2011.04.039
  49. [49] Yub X, Liua Y, Cuia Y, Chenga Q, Zhanga Z, Lua JH, et al. Measurement of filter paper activities of cellulase with microplate-based assay. J Biol Sci. 2015;44(1):S93-8. DOI: 10.1016/j.sjbs.2015.06.018.10.1016/j.sjbs.2015.06.018470526726858572
  50. [50] Akhtar N, Sharma A, Deka D, Jawed M, Goyal D, Goyald A. Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environ Progr Sust Ener. 2012;32(4):1195-201. DOI: 10.1002/ep.11726.10.1002/ep.11726
DOI: https://doi.org/10.2478/cdem-2020-0010 | Journal eISSN: 2084-4506 | Journal ISSN: 1640-9019
Language: English
Page range: 133 - 143
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2021 Katarzyna Grata, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.