Have a personal or library account? Click to login
Optimality conditions for ε-weak local quasi-efficient solutions of D.C. vector optimization problems Cover

Optimality conditions for ε-weak local quasi-efficient solutions of D.C. vector optimization problems

Open Access
|Jan 2026

References

  1. Attouch, H. and Riahi, H. (1993) Stability results for Ekeland’s ε-variational principle and cone extremal solutions. Math. Oper. Res. 18: 173-201. https://doi.org/10.1287/moor.18.1.173
  2. Benslimane, O., Gadhi, N. A. and zerrifi, A. I. (2024) ε-weak Pareto minimality in DC vector optimization. NACO. https://doi.org/10.3934/naco.2024001
  3. Bomze, I. M. and Lemare´chal, C. (2010) Necessary conditions for local optimality in difference-of-convex programming. Journal of Convex Analysis 17: 673-680.
  4. Craven, B. D. (1995) Control and Optimization. Chapman & Hall, London.
  5. Dür, M. (2003) A parametric characterization of local optimality. Math. Methods Oper. Res. 57: 101-109. https://doi.org/10.1007/s001860200232
  6. Dutta, J. (2005) Necessary optimality conditions and saddle points for approximate optimization in Banach spaces. TOP 13: 127-143. https://link.springer.com/article/10.1007/bf02578991
  7. Ekeland, I. (1974) On the variational principle. J. Math. Anal. Appl. 47: 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
  8. Gadhi, N. A. (2024) Focus on sufficient optimality conditions in D.C. vector optimization. Optimization 73: 1611-1623. https://doi.org/10.1080/02331934.2023.2170700
  9. Gadhi, N. and Metrane, A. (2004) Sufficient optimality condition for vector optimization problems under D.C. date. J. Glob. Optim. 28: 55-66. https://doi.org/10.1023/B:JOGO.0000006715.69153.8b
  10. Gadhi, N., Laghdir, M. and Metrane, A. (2005) Optimality conditions for D.C. vector optimization problems under reverse convex constraints. J. Glob. Optim. 33: 527-540. https://doi.org/10.1007/s10898-004-8318-4
  11. Ghaznavi-Ghosoni, B.A. and Khorram, E. (2011) On approximating weakly/properly efficient solutions in multi-objective programming. Math. Comput. Modelling 54: 3172-3181. https://doi.org/10.1016/j.mcm.2011.08.013
  12. Guo, X. L. and Li, S. J. (2014) Optimality conditions for vector optimization problems with difference of convex maps. J. Optim. Theory Appl. 162: 821-844. https://doi.org/10.1007/s10957-013-0327-3
  13. Hamel, A. (2001) An ε-Lagrange multiplier rule for a mathematical program-ming problem on Banach spaces. Optimization 49: 137-149. https://doi.org/10.1080/02331930108844524
  14. Hiriart-Urruty, J. B. (1989) From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality. In: F. H. Clarke, V. F. Dem’yanov and F. Giannessi, eds., Nonsmooth Optimization and Related Topics. Ettore Majorana International Science Series, 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6019-4_13
  15. Li, z. and Wang, S. (1998) ε-approximation solutions in multiobjective optimization. Optimization 44: 161-174. https://doi.org/10.1080/02331939808844406
  16. Liu, J. C. (1999) ε-properly efficient solutions to nondifferentiable multi-objective programming problems. Applied Mathematics Letters 12: 109-113. https://doi.org/10.1016/S0893-9659(99)00087-7
  17. Khazayel, B. and Farajzadeh, A. (2022) On the optimality conditions for D.C. vector optimization problems. Optimization 71, 2033-2045. https://doi.org/10.1080/02331934.2020.1847109
  18. Loridan, P. (1982) Necessary conditions for ǫ-optimality. Math. Progr. Stud. 19: 140-152. https://doi.org/10.1007/BFb0120986
  19. Loridan, P. (1984) ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43: 265-276. https://doi.org/10.1007/BF00936165
  20. Mordukhovich, B. S. and Wang, B. (2002) Necessary suboptimality and optimality conditions via variational principles. SIAM J. Control Optim. 41: 623-640. https://doi.org/10.1137/S036301290037481
  21. Penot, J. P. (2011) The directional subdifferential of the difference of two convex functions. J. Glob. Optim. 49, 505-519. https://doi.org/10.1007/s10898-010-9615-8
  22. Shafie, A. and Bozorgnia, F. (2019) A note on the paper “Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps”. Journal of Optimization Theory and Applications 182: 837-849. https://doi.org/10.1007/s10957-019-01530-x
  23. Su, T. V. and Hang, D. D. (2022) Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints. 4OR 20:105-137. https://doi.org/10.1007/s10288-020-00470-x
  24. Zălinescu, C. (2008) Hahn-Banach extension theorems for multifunctions revisited. Math. Meth. Oper. Res. 68: 493-508. https://doi.org/10.1007/s00186-007-0193-6
  25. Zowe, J. (1974) Subdifferentiability of convex functions with values in an ordered vector space. Math. Scand. 34: 69-83. https://doi.org/10.7146/math.scand.a-11507
DOI: https://doi.org/10.2478/candc-2025-0010 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 289 - 308
Submitted on: Sep 1, 2024
|
Accepted on: Nov 1, 2025
|
Published on: Jan 22, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Nazih Abderrazzak Gadhi, Imad Amrani Zerrifi, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.