References
- A
ttouch , H.and Riahi , H. (1993) Stability results for Ekeland’s ε-variational principle and cone extremal solutions. Math. Oper. Res. 18: 173-201. https://doi.org/10.1287/moor.18.1.173 - B
enslimane , O., Gadhi , N. A.and zerrifi , A. I. (2024) ε-weak Pareto minimality in DC vector optimization. NACO. https://doi.org/10.3934/naco.2024001 - B
omze , I. M.and Lemare ´chal , C. (2010) Necessary conditions for local optimality in difference-of-convex programming. Journal of Convex Analysis 17: 673-680. - C
raven , B. D. (1995) Control and Optimization. Chapman & Hall, London. - D
ür , M. (2003) A parametric characterization of local optimality. Math. Methods Oper. Res. 57: 101-109. https://doi.org/10.1007/s001860200232 - D
utta , J. (2005) Necessary optimality conditions and saddle points for approximate optimization in Banach spaces. TOP 13: 127-143. https://link.springer.com/article/10.1007/bf02578991 - E
keland , I. (1974) On the variational principle. J. Math. Anal. Appl. 47: 324-353. https://doi.org/10.1016/0022-247X(74)90025-0 - G
adhi , N. A. (2024) Focus on sufficient optimality conditions in D.C. vector optimization. Optimization 73: 1611-1623. https://doi.org/10.1080/02331934.2023.2170700 - G
adhi , N.and Metrane , A. (2004) Sufficient optimality condition for vector optimization problems under D.C. date. J. Glob. Optim. 28: 55-66. https://doi.org/10.1023/B:JOGO.0000006715.69153.8b - G
adhi , N., Laghdir , M.and Metrane , A. (2005) Optimality conditions for D.C. vector optimization problems under reverse convex constraints. J. Glob. Optim. 33: 527-540. https://doi.org/10.1007/s10898-004-8318-4 - G
haznavi -Ghosoni , B.A.and Khorram , E. (2011) On approximating weakly/properly efficient solutions in multi-objective programming. Math. Comput. Modelling 54: 3172-3181. https://doi.org/10.1016/j.mcm.2011.08.013 - G
uo , X. L.and Li , S. J. (2014) Optimality conditions for vector optimization problems with difference of convex maps. J. Optim. Theory Appl. 162: 821-844. https://doi.org/10.1007/s10957-013-0327-3 - H
amel , A. (2001) An ε-Lagrange multiplier rule for a mathematical program-ming problem on Banach spaces. Optimization 49: 137-149. https://doi.org/10.1080/02331930108844524 - H
iriart -Urruty , J. B. (1989) From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality. In: F. H. Clarke, V. F. Dem’yanov and F. Giannessi, eds., Nonsmooth Optimization and Related Topics. Ettore Majorana International Science Series, 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6019-4_13 - L
i ,z. and Wang , S. (1998) ε-approximation solutions in multiobjective optimization. Optimization 44: 161-174. https://doi.org/10.1080/02331939808844406 - L
iu , J. C. (1999) ε-properly efficient solutions to nondifferentiable multi-objective programming problems. Applied Mathematics Letters 12: 109-113. https://doi.org/10.1016/S0893-9659(99)00087-7 - K
ha zayel , B.and Farajzadeh , A. (2022) On the optimality conditions for D.C. vector optimization problems. Optimization 71, 2033-2045. https://doi.org/10.1080/02331934.2020.1847109 - L
oridan , P. (1982) Necessary conditions for ǫ-optimality. Math. Progr. Stud. 19: 140-152. https://doi.org/10.1007/BFb0120986 - L
oridan , P. (1984) ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43: 265-276. https://doi.org/10.1007/BF00936165 - M
ordukhovich , B. S.and Wang , B. (2002) Necessary suboptimality and optimality conditions via variational principles. SIAM J. Control Optim. 41: 623-640. https://doi.org/10.1137/S036301290037481 - P
enot , J. P. (2011) The directional subdifferential of the difference of two convex functions. J. Glob. Optim. 49, 505-519. https://doi.org/10.1007/s10898-010-9615-8 - S
hafie , A.and Bozorgnia , F. (2019) A note on the paper “Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps”. Journal of Optimization Theory and Applications 182: 837-849. https://doi.org/10.1007/s10957-019-01530-x - S
u , T. V.and Hang , D. D. (2022) Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints. 4OR 20:105-137. https://doi.org/10.1007/s10288-020-00470-x - Z
ălinescu , C. (2008) Hahn-Banach extension theorems for multifunctions revisited. Math. Meth. Oper. Res. 68: 493-508. https://doi.org/10.1007/s00186-007-0193-6 - Z
owe , J. (1974) Subdifferentiability of convex functions with values in an ordered vector space. Math. Scand. 34: 69-83. https://doi.org/10.7146/math.scand.a-11507