Have a personal or library account? Click to login
Optimality conditions for bilevel optimization with variational inequality constraints using approximations Cover

Optimality conditions for bilevel optimization with variational inequality constraints using approximations

Open Access
|Dec 2025

References

  1. Allali, K. and Amahroq, T. (1997) Second order approximations and dual necessary optimality conditions. Optimization 40, 3, 229–246.
  2. Amahroq, T. and Gadhi, N. (2001) On the regularity condition for vector programming problems. J. Global Optim. 21, 433–441.
  3. Amahroq, T. and Gadhi, N. (2003) Second order optimality conditions for the extremal problem under inclusion constraints. J. Math. Anal. Appl. 285, 1, 74–85.
  4. Auslender, A. (1976) Optimisation: Méthodes Numériques. Masson, Paris.
  5. Ben-Ayed, O., Boyce, D. E. and Blair, C. E. (1988) A general bilevel linear programming formulation of the network design problem. Transp. Res. 21, 37–44.
  6. Bonnans, J. F. and Shapiro, A. (2000) Perturbation Analysis of Optimization Problems. Springer Series in Operations Research 117, Springer, New York.
  7. Bracken, J. and McGill, J. T. (1973) Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44.
  8. Chen, Y. and Florian, M. (1995) The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions. Optimization 32, 3, 193–209.
  9. Clarke, F. H. (1990) Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics.
  10. Danskin, J. (1967) The theory of max-min, with applications. SIAM J. Appl. Math. 14, 641-664.
  11. Dardour, Z., Lafhim, L. and Kalmoun, E. M. (2024) Primal and dual second-order necessary optimality conditions in bilevel programming. J. Appl. Numer. Optim. 6, 153-175.
  12. Dardour, Z., El Idrissi, R., Kalmoun, E. M. and Lafhim, L. (2025) Second-order necessary conditions for bilevel programs via KKT reformulation. Carpa-thian J. Math. 41, 3, 597–618.
  13. Dempe, S. and Dutta, J. (2012) Is bilevel programming a special case of a mathematical program with complementarity constraints?. Mathematical Programming. 131 37-48.
  14. Dempe, S. and Gadhi, N. (2010) Second order optimality conditions for bilevel set optimization problems. J. Global Optim. 47, 233-245.
  15. Dempe, S. and Zemkoho, A. B. (2013) The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math. Program. 138, 1-2, 447-473.
  16. El Idrissi, R., Lafhim, L. and Ouakrim, Y. (2024) Pontryagin optimality conditions for generalized bilevel optimal control problems with pure state inequality constraints. J. Appl. Numer. Optim. 6, 229–248.
  17. El Idrissi, R., Lafhim, L., Kalmoun, E. M. and Ouakrim, Y. (2024) Optimality conditions for bilevel optimal control problems with non-convex quasi-variational inequalities. RAIRO Oper. Res. 58, 2, 1789–1805.
  18. Falk, J. E. and Liu, J. M. (1995) On bilevel programming, Part I: General nonlinear cases. Math. Program. 70, 47-72.
  19. Fiacco, A.V. and McCormick, G.P. (1990) Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM Classics in Applied Mathematics 4, Philadelphia.
  20. Fukushima, M. (1992) Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110.
  21. Gauvin, J. and Dubeau, F. (1982) Differential properties of the marginal function in mathematical programming. Math. Program. Stud. 19, 101–119.
  22. Hansen, P., Jaumard, B. and Savard, G. (1992) New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217.
  23. Hearn, D. W. (1982) The gap function of a convex program. Oper. Res. Lett. 1, 2, 67–71.
  24. Hiriart-Urruty, J. B., Strodiot, J. J. and Nguyen, V. (1984) Generalized Hessian matrix and second order optimality conditions for problems with C1,1 data. Appl. Math. Optim. 11, 43–56.
  25. Huang, Z., Lin, G. and Xiu, N. (2014) Several developments of variational inequalities and complementarity problems, bilevel programming and MPEC. Oper. Res. 18, 1.
  26. Ioffe, A. D. (1989) Approximate subdifferential and applications. III: The metric theory. Mathematika 36, 1–38.
  27. Jeyakumar, V. and Luc, D. T. (1998) Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization. SIAM J. Control Optim. 36, 1815–1832.
  28. Jourani, A. and Thibault, L. (1993) Approximations and metric regularity in mathematical programming in Banach spaces. Math. Oper. Res. 18, 1, 199–224.
  29. Khanh, P. Q. and Tuan, N. D. (2006) First and second order optimality conditions using approximations for nonsmooth vector optimization in Banach spaces. J. Optim. Theory Appl. 130, 2, 289–308.
  30. Khanh, P. Q. and Tung, L. T. (2013) First and second-order optimality conditions using approximations for vector equilibrium problems with constraints. J. Global Optim. 55, 901–920.
  31. Khanh, P. Q. and Tung, L. T. (2015) First- and second-order optimality conditions for multiobjective fractional programming. TOP 23, 419–440.
  32. Khanh, P. Q. and Tung, N. M. (2015) First and second-order optimality conditions without differentiability in multivalued vector optimization. Positivity 19, 817–841.
  33. Lafhim, L. (2024) First and Second Order Optimality Conditions using Approximations for Fractional Multiobjective Bilevel Problems under Fractional Constraints. Iran. J. Math. Sci. Inform. 19, 1, 211–232.
  34. Loewen, P. D. (1992) Limits of Fréchet normals in nonsmooth analysis. Optimization and Nonlinear Analysis, Pitman Res. Notes Math. Ser. 244, 178–188.
  35. Marcotte, P. and Dussault, J.-P. (1987) A note on a globally convergent method for solving monotone variational inequalities. Oper. Res. Lett. 6, 35–42.
  36. Marcotte, P. and Dussault, J.-P. (1989) A sequential linear programming algorithm for solving monotone variational inequalities. SIAM J. Control Optim. 27: 1260–1278.
  37. Mordukhovich, B. S., Nghia, T. T. A. and Rockafellar, R. T. (2013) Full stability in finite-dimensional optimization. Math. Oper. Res. 38, 4, 768–783.
  38. Mordukhovich, B. S. and Shao, Y. (1995) On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2, 211–227.
  39. Outrata, J. V. (1994) On optimization problems with variational inequality constraints. SIAM J. Optim. 4, 2, 340–357.
  40. Rockafellar, R. T. (1970) Convex Analysis. Princeton University Press, Princeton, NJ.
  41. Rockafellar, R. T. and Wets, R. J.-B. (1998) Variational Analysis. Grundlehren der Mathematischen Wissenschaften 317, Springer, Berlin.
  42. Stackelberg, H. (1952) The Theory of the Market Economy. Oxford University Press, Oxford, UK.
  43. Stampacchia, G. (1964) Formes bilinéaires coercitives sur les ensembles convexes. C. R. Math. Acad. Sci. Paris 258, 4413–4416.
  44. Sweetser, T. H. (1977) A minimal set-valued strong derivative for set-valued Lipschitz functions. J. Optim. Theory Appl. 23, 539–562.
  45. Thibault, L. (1980) Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Mat. Pura Appl. 4, 125, 157–192.
  46. Wan, Z. and Chen, J. W. (2013) On bilevel variational inequalities. J. Oper. Res. Soc. China 1, 4, 483–510.
  47. Ye, J. J. (2000) Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 4, 943–962.
  48. Ye, J. J. (1999) Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 9, 374–387.
  49. Ye, J. J. and Ye, X. Y. (1997) Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997.
  50. Ye, J. J., Zhu, D. L. and Zhu, Q. J. (1997) Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507.
  51. Zemkoho, A. B. and Zhou, S. (2021) Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization. Comput. Optim. Appl. 78(2), 625-674.
  52. Zhang, H. (2014) Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Math. Control Relat. Fields 4, 3, 365–379.
DOI: https://doi.org/10.2478/candc-2025-0005 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 123 - 155
Submitted on: May 1, 2025
|
Accepted on: Sep 1, 2025
|
Published on: Dec 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zakarya Dardour, Rachid El Idrissi, El Mostafa Kalmoun, Lahoussine Lafhim, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.