References
- A
llali , K.and Amahroq , T. (1997) Second order approximations and dual necessary optimality conditions. Optimization 40, 3, 229–246. - A
mahroq , T.and Gadhi , N. (2001) On the regularity condition for vector programming problems. J. Global Optim. 21, 433–441. - A
mahroq , T.and Gadhi , N. (2003) Second order optimality conditions for the extremal problem under inclusion constraints. J. Math. Anal. Appl. 285, 1, 74–85. - A
uslender , A. (1976) Optimisation: Méthodes Numériques. Masson, Paris. - B
en -Ayed , O., Boyce , D. E.and Blair , C. E. (1988) A general bilevel linear programming formulation of the network design problem. Transp. Res. 21, 37–44. - B
onnans , J. F.and Shapiro , A. (2000) Perturbation Analysis of Optimization Problems. Springer Series in Operations Research 117, Springer, New York. - B
racken , J.and Mc Gill , J. T. (1973) Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44. - C
hen , Y.and Florian , M. (1995) The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions. Optimization 32, 3, 193–209. - C
larke , F. H. (1990) Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics. - D
anskin , J. (1967) The theory of max-min, with applications. SIAM J. Appl. Math. 14, 641-664. - D
ardour , Z., Lafhim , L.and Kalmoun , E. M. (2024) Primal and dual second-order necessary optimality conditions in bilevel programming. J. Appl. Numer. Optim. 6, 153-175. - D
ardour , Z., El Idrissi , R., Kalmoun , E. M.and Lafhim , L. (2025) Second-order necessary conditions for bilevel programs via KKT reformulation. Carpa-thian J. Math. 41, 3, 597–618. - D
empe , S.and Dutta , J. (2012) Is bilevel programming a special case of a mathematical program with complementarity constraints?. Mathematical Programming. 131 37-48. - D
empe , S.and Gadhi , N. (2010) Second order optimality conditions for bilevel set optimization problems. J. Global Optim. 47, 233-245. - D
empe , S.and Zemkoho , A. B. (2013) The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math. Program. 138, 1-2, 447-473. - E
l Idrissi , R., Lafhim , L.and Ouakrim , Y. (2024) Pontryagin optimality conditions for generalized bilevel optimal control problems with pure state inequality constraints. J. Appl. Numer. Optim. 6, 229–248. - E
l Idrissi , R., Lafhim , L., Kalmoun , E. M.and Ouakrim , Y. (2024) Optimality conditions for bilevel optimal control problems with non-convex quasi-variational inequalities. RAIRO Oper. Res. 58, 2, 1789–1805. - F
alk , J. E.and Liu , J. M. (1995) On bilevel programming, Part I: General nonlinear cases. Math. Program. 70, 47-72. - F
iacco , A.V.and Mc Cormick , G.P. (1990) Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM Classics in Applied Mathematics 4, Philadelphia. - F
ukushima , M. (1992) Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110. - G
auvin , J.and Dubeau , F. (1982) Differential properties of the marginal function in mathematical programming. Math. Program. Stud. 19, 101–119. - H
ansen , P., Jaumard , B.and Savard , G. (1992) New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217. - H
earn , D. W. (1982) The gap function of a convex program. Oper. Res. Lett. 1, 2, 67–71. - H
iriart -Urruty , J. B., Strodiot , J. J.and Nguyen , V. (1984) Generalized Hessian matrix and second order optimality conditions for problems with C1,1 data. Appl. Math. Optim. 11, 43–56. - H
uang , Z., Lin , G.and Xiu , N. (2014) Several developments of variational inequalities and complementarity problems, bilevel programming and MPEC. Oper. Res. 18, 1. - I
offe , A. D. (1989) Approximate subdifferential and applications. III: The metric theory. Mathematika 36, 1–38. - J
eyakumar , V.and Luc , D. T. (1998) Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization. SIAM J. Control Optim. 36, 1815–1832. - J
ourani , A.and Thibault , L. (1993) Approximations and metric regularity in mathematical programming in Banach spaces. Math. Oper. Res. 18, 1, 199–224. - K
hanh , P. Q.and Tuan , N. D. (2006) First and second order optimality conditions using approximations for nonsmooth vector optimization in Banach spaces. J. Optim. Theory Appl. 130, 2, 289–308. - K
hanh , P. Q.and Tung , L. T. (2013) First and second-order optimality conditions using approximations for vector equilibrium problems with constraints. J. Global Optim. 55, 901–920. - K
hanh , P. Q.and Tung , L. T. (2015) First- and second-order optimality conditions for multiobjective fractional programming. TOP 23, 419–440. - K
hanh , P. Q.and Tung , N. M. (2015) First and second-order optimality conditions without differentiability in multivalued vector optimization. Positivity 19, 817–841. - L
afhim , L. (2024) First and Second Order Optimality Conditions using Approximations for Fractional Multiobjective Bilevel Problems under Fractional Constraints. Iran. J. Math. Sci. Inform. 19, 1, 211–232. - L
oewen , P. D. (1992) Limits of Fréchet normals in nonsmooth analysis. Optimization and Nonlinear Analysis, Pitman Res. Notes Math. Ser. 244, 178–188. - M
arcotte , P.and Dussault , J.-P. (1987) A note on a globally convergent method for solving monotone variational inequalities. Oper. Res. Lett. 6, 35–42. - M
arcotte , P.and Dussault , J.-P. (1989) A sequential linear programming algorithm for solving monotone variational inequalities. SIAM J. Control Optim. 27: 1260–1278. - M
ordukhovich , B. S., Nghia , T. T. A.and Rockafellar , R. T. (2013) Full stability in finite-dimensional optimization. Math. Oper. Res. 38, 4, 768–783. - M
ordukhovich , B. S.and Shao , Y. (1995) On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2, 211–227. - O
utrata , J. V. (1994) On optimization problems with variational inequality constraints. SIAM J. Optim. 4, 2, 340–357. - R
ockafellar , R. T. (1970) Convex Analysis. Princeton University Press, Princeton, NJ. - R
ockafellar , R. T.and Wets , R. J.-B. (1998) Variational Analysis. Grundlehren der Mathematischen Wissenschaften 317, Springer, Berlin. - S
tackelberg , H. (1952) The Theory of the Market Economy. Oxford University Press, Oxford, UK. - S
tampacchia , G. (1964) Formes bilinéaires coercitives sur les ensembles convexes. C. R. Math. Acad. Sci. Paris 258, 4413–4416. - S
weetser , T. H. (1977) A minimal set-valued strong derivative for set-valued Lipschitz functions. J. Optim. Theory Appl. 23, 539–562. - T
hibault , L. (1980) Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Mat. Pura Appl. 4, 125, 157–192. - W
an , Z.and Chen , J. W. (2013) On bilevel variational inequalities. J. Oper. Res. Soc. China 1, 4, 483–510. - Y
e , J. J. (2000) Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 4, 943–962. - Y
e , J. J. (1999) Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 9, 374–387. - Y
e , J. J.and Ye , X. Y. (1997) Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997. - Y
e , J. J., Zhu , D. L.and Zhu , Q. J. (1997) Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507. - Z
emkoho , A. B.and Zhou , S. (2021) Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization. Comput. Optim. Appl. 78(2), 625-674. - Z
hang , H. (2014) Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Math. Control Relat. Fields 4, 3, 365–379.