References
- A
hmad , I., Jayswal , A., Al -Homidan , S.,and Banerjee , J. (2019) Sufficiency and duality in interval-valued variational programming. Neural Comput. Appl., 31(8) 4423–4433. - A
l -Awami , A.T., Amleh , N.A.and Muqbel , A.M. (2017) Optimal Demand Response Bidding and Pricing Mechanism With Fuzzy Optimization: Application for a Virtual Power Plant. IEEE Trans. Ind. Appl., 53(5), 5051–5061. - B
abazadeh , R. (2019) Application of Fuzzy Optimization to Bioenergy-Supply-Chain Planning under Epistemic Uncertainty: A New Approach. Ind. Eng. Chem. Res., 58(16) 6519–6536. - B
ector , C.R., Chandra , S.and Husain , I. (1984) Generalized concavity and duality in continuous programming. Ufilifas Math., 25 171–190. - B
ector , C.R.and Husain , I. (1992) Duality for multiobjective variational problems. J. Math. Anal. Appl., 166(1) 214–229. - B
eck , A.and Ben -Tal , A. (2009) Duality in robust optimization: Primal worst equals dual best. Oper. Res. Lett., 37 1–6. - D
hingra , V.and Kailey , N. (2022) Optimality and duality for second-order interval-valued variational problems. J. Appl. Math. Comput., 68 3147–3162. - E
smaelzadeh , R. (2014) Low-thrust orbit transfer optimization using a combined method. Int. J. Comput.Appl., 89(4) 20–24. - G
uo ,Y., Ye , G., Liu , W., Zhao , D.and Treanţă , S. (2021) Optimality conditions and duality for a class of generalized convex interval-valued optimization problems. Mathematics, 9 2979. - G
uo ,Y., Ye , G., Liu , W., Zhao , D.and Treanţă , S. (2022) On symmetric gH-derivative applications to dual interval-valued optimization problems. Chaos, Solitons and Fractals, 158 112068. - G
uo ,Y., Ye , G., Liu , W., Zhao , D.and Treanţă , S. (2023) Solving nonsmooth interval optimization problems based on interval-valued symmetric invexity. Chaos, Solitons and Fractals, 174 113834. - I
shibuch , H.and Tanaka , H. (1990) Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res., 48(2) 219–225. - J
eyakumar , V., Li , G.and Lee , G.M. (2012) Robust duality for generalized convex programming problems under data uncertainty. Nonlin. Anal. Theory Meth. Appl., 75 1362–1373. - K
oopialipoor , M.and Noorbakhsh , A. (2020) Applications of artificial intelligence techniques in optimizing drilling. In: Emerging Trends in Mechatronics, Intechopen, London 89–118. - M
oore , R.E. (1979) Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia. - M
ond , B.and Hanson , M.A. (1968) Duality for control problems. SIAM J. Control, 6 114–120. - T
reanţă , S. (2021a) On a dual pair of multiobjective interval-valued variational control problems. Mathematics, 9 893. - T
reanţă , S. (2021b) Efficiency in uncertain variational control problems. Neural Comput. Appl., 33(11) 5719–5732. - T
reanţă , S. (2021c) On a class of constrained interval-valued optimization problems governed by mechanical work cost functionals. J. Optim. Theory Appl., 188(3) 913–924. - T
reanţă , S. (2022a) Characterization results of solutions in interval-valued optimization problems with mixed constraints. J. Global Optim., 82 951–964. - T
reanţă , S. (2022b) LU-optimality conditions in optimization problems with mechanical work objective functionals. IEEE Trans. Neur. Net. Lear., 33(9) 4971–4978. - U
padhyay , B.B., Ghosh , A., Mishra , P.and Treanţă , S. (2022) Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity. RAIRO Oper. Res., 56(8) 2037–2065. - U
padhyay , B.B., Ghosh , A.and Treanţă , S. (2023) Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifolds. Bull. Iran. Math. Soc., 49 45.