Have a personal or library account? Click to login
Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints Cover

Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints

By: Eduardo Casas and  Karl Kunisch  
Open Access
|Jan 2025

References

  1. Aseev, S., Krastanov, M. and Veliov, V. (2017) Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal., .(3):395–409.
  2. Azmi, B., Kunisch, K. and Rodrigues, S. (2021) Saturated feedback stabilizability to trajectories for the Schlögl parabolic equation. IEEE Transactions on Automatic Control, 68(12), 7089–7103.
  3. Basco, V., Cannarsa, P. and Frankowska, H. (2018) Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, .(3-4):535–555.
  4. Carlson, D., Haurie, A. and Leizarowitz, A. (1991) Infinite Horizon Optimal Control. Deterministic and Stochastic Systems. Springer-Verlag, Berlin. Second revised and enlarged edition of the 1987 original.
  5. Casas, E. (2012) Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim., 50(4):2355–2372.
  6. Casas, E., Herzog, R. and Wachsmuth, G. (2012) Optimality conditions and error analysis of semilinear elliptic control problems with .1 cost functional. SIAM J. Optim., 22(3):795–820.
  7. Casas, E., Herzog, R. and Wachsmuth, G. (2017) Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var., 23:263–295.
  8. Casas, E. and Kunisch, K. (2022) Infinite horizon optimal control problems for a class of semilinear parabolic equations. SIAM J. Control Optim., 60(4):2070–2094.
  9. Casas, E. and Kunisch, K. (2023a) Infinite horizon optimal control for a general class of semilinear parabolic equations. Appl. Math. Optim., 88: Paper No. 47, 36.
  10. Casas, E. and Kunisch, K. (2023b) Infinite horizon optimal control problems with discount factor on the state. Part II: Analysis of the control problem. SIAM J. Control Optim., 61(3):1438–1459.
  11. Casas, E. and Kunisch, K. (2024a) First and second order optimality conditions for the control of infinite horizon Navier Stokes equations. Optimization. To appear in CPAA.
  12. Casas, E. and Kunisch, K. (2024b) Space-time .-estimates for solutions of infinite horizon semilinear parabolic equations. 12 June 2024. DOI: 10.1080/02331934.2024.2358406.
  13. Casas, E. and Mateos, M. (2020) Critical cones for sufficient second order conditions in pde constrained optimization. SIAM J. Optim., 30(1):585–603.
  14. Casas, E., Mateos, M. and Rösch, A. (2019) Error estimates for semilinear parabolic control problems in the absence of Tikhonov term. SIAM J. Control Optim., 57(4):2515–2540.
  15. Casas, E. and Tröltzsch, F. (2015) Second order optimality conditions and their role in pde control. Jahresber Dtsch Math-Ver, 117(1):3–44.
  16. Casas, E. and Tröltzsch, F. (2016) Second order optimality conditions for weak and strong local solutions of parabolic optimal control problems. Vietnam J. Math., 44(1):181–202.
  17. Disser, K., ter Elst, A. F. M. and Rehberg, J. (2017) Hölder estimates for parabolic operators on domains with rough boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17(1):65–79.
  18. Dunn, J. (1998) On second order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces. In: A. Fiacco, ed., Mathematical Programming with Data Perturbations, 83–107, New York. Marcel Dekker.
  19. Halkin, H. (1974) Necessary conditions for optimal control problems with infinite horizons. Econometrica, 42(2):267–272.
  20. Maurer, H. and Zowe, J. (1979) First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming, 16: 98–110.
DOI: https://doi.org/10.2478/candc-2024-003 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 11 - 42
Submitted on: Jun 1, 2024
|
Accepted on: Aug 1, 2024
|
Published on: Jan 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Eduardo Casas, Karl Kunisch, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.