References
- ALGARNI, A. and KUDENKO, D. (2017) Distribution of Data Across Multiple Cloud Storage using Reinforcement Learning Method. In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence, ICAART 2017, 431–438.
- ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, I. and ZAHARIA, M. (2010) A view of cloud computing. Commun. ACM, 53, 4, 50–58. https://doi.org/10.1145/1721654.1721672.
- BALA, A., RASHID, R. Z. J. A., ISMAIL, I. et al. (2024) Artificial intelligence and edge computing for machine maintenance-review. Artif. Intell. Rev. 57(1), 119. https://doi.org/10.1007/s10462-024-10748-9
- BELGAUM, M. R., MUSA, S., ALAM, M. and MAZLIHAM, M. S. (2019) Integration Challenges of Artificial Intelligence in Cloud Computing, Internet of Things, and Software-Defined Networking. In: Proceedings of the 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). IEEE, 1-5. https://doi.org/10.1109/MACS48846.2019.9024828
- BESSANI, A., CORREIA, M., QUARESMA, B., ANDR, F. and SOUSA, P. (2011) Depsky: Dependable and secure storage in a cloud-of-clouds. In: Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, New York, NY, USA. ACM, 31–46.
- BHARDWAJ, H., TOMAR, P., SAKALLE, A. and BHARDWAJ, A. (2021) Classification of extraversion and introversion personality trait using electroencephalogram signals. In: International Conference on Artificial Intelligence and Sustainable Computing. Springer, Cham, 31-39.
- BOWERS, K. D., JUELS, A. and OPREA, A. (2009) Hail: A high-availability and integrity layer for cloud storage. In: Proceedings of the 16th ACM Conference on Computer and Communications Security. New York, NY, USA. ACM, 187-198.
- BUYYA, R., YEO, C. S., VENUGOPAL, S., BROBERG, J. and BRANDIC, I. (2009) Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25, 6, 599–616 . doi: 10.1016/j.future.2008.12.001.
- CAGLAR, O., TASKIN, F., BAGLUM, C., ASIK, S. and YAYAN, U. (2023) Development of Cloud and Artificial Intelligence based Software Testing Platform (ChArIoT). In: Proceedings of the 2023 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 1-6. https://doi.org/10.1109/ASYU58738.2023.10296551
- DHAYA, R. and KANTHAVEL, R. (2022a) Applying Deep Convolution Neural Network (DCNN) Algorithm in the Cloud Autonomous Vehicles Traffic Model. The International Arab Journal of Information Technology, 19, 2, 186-194.
- DHAYA, R. and KANTHAVEL, R. (2022b) Dynamic automated infrastructure for efficient cloud data centre. Computers Materials & Continua 71(1), 1625-1639. https://doi.org/10.32604/cmc.2022.022213
- DHAYA, R., DEVI, M., KANTHAVEL, R., ALGARNI, F. and DIXIKHA, P. (2019) Exploration of Maximizing the Significance of Big Data in Cloud Computing. In: International Conference on Emerging Current Trends in Computing and Expert Technology. Springer, Cham, 695-702.
- DHAYA, R., KANTHAVEL, R. and MAHALAKSHMI, M. (2022) Enriched recognition and monitoring algorithm for private cloud data centre. Soft Computing, 26. 12871–12881 https://doi.org/10.1007/s00500-021-05967-z
- DHIMAN, G. and ALGHAMDI, N. S. (2024) SMoSE: Artificial Intelligence-Based Smart City Framework Using Multi-Objective and IoT Approach for Consumer Electronics Application. IEEE Transactions on Consumer Electronics, 70, 1, 3848-3855. doi: 10.1109/TCE.2024.3363720
- GHAVAMIPOOR, H., MOUSAVI, S. A. K., FARAGARDI, H. R. and RASOULI, N. (2020) A Reliability Aware Algorithm for Workflow Scheduling on Cloud Spot Instances Using Artificial Neural Network. In: Proceedings of the 2020 10th International Symposium on Telecommunications (IST). IEEE, 67-71. https://doi.org/10.1109/IST50524.2020.9345896
- GILL, S. S., XU, M., OTTAVIANI, C., PATROS, P., BAHSOON, R., SHAGHAGHI, A., GOLEC, M., STANKOVSKI, V., WU, H., ABRAHAM, A., SINGH, M., MEHTA, H., GHOSH, S. K., BAKER, T., PARLIKAD, A. K., LUTFIYYA, H., KANHERE, S. S., SAKELLARIOU, R., DUSTDAR, S., RANA, O., BRANDIC, I. and UHLIG, S. (2022) AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514
- GRIESCH, L., RITTELMEYER, J. and SANDKUHL, K. (2024) Towards AI as a Service for Small and Medium-Sized Enterprises (SME). In: J. P. A. Almeida, M. Kaczmarek-Heß, A. Koschmider and H. A. Proper, eds., The Practice of Enterprise Modeling. PoEM 2023. Lecture Notes in Business Information Processing 497. Springer, Cham. https://doi.org/10.1007/978-3-031-48583-13
- HAGEMANN, T. and KATSAROU, K. (2020) A Systematic Review on Anomaly Detection for Cloud Computing Environments. In: 2020 3rd Artificial Intelligence and Cloud Computing Conference (AICCC 2020). Kyoto. Japan. ACM, New York, NY, USA, 14, 18–20.
- KANUNGO, S. (2024) AI-driven resource management strategies for cloud computing systems, services, and applications. World Journal of Advanced Engineering Technology and Sciences, 11 (02), 559–566.
- KAPOOR, S. and PANDA, S. N. (2019) Energy-Aware Parallel Computing for Cloud Architecture using ANN. In: 2019 Global Conference for Advancement in Technology (GCAT). IEEE, 1-4.
- KAUR, M. and DILBAG, S. (2021) Multi objective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption. Multidimensional Systems and Signal Processing, 32, 1, 281–301.
- KAUR, M., SINGH, D., KUMAR, V., GUPTA, B. B. and ABD EL-LATIF, A. A. (2021) Secure and Energy Efficient-Based E-Health Care Framework for Green Internet of Things. IEEE Transactions on Green Communications and Networking, 5, 3, 1223–1231.
- KLIMT, B. and YANG, Y. (2004) The Enron Corpus: A New Dataset for Email Classification Research. Carnegie Mellon University https://www.cs.cmu.edu/~enron/
- KUSHWAHA, S. S., JOSHI, S., SINGH, D., KAUR, M. and LEE, H.-N. (2022) Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract. IEEE Access, 10, 6605-6621.
- LIN, C., SUN, H., HWANG, J., VUKOVIC, M. and ROFRANO, J. (2019) Cloud Readiness Planning Tool (CRPT): An AI-Based Framework to Automate Migration Planning. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), 58–62.
- MOHAMED, N., SRIDHARA RAO, L., SHARMA, M., SURESH BABU, R., ALFURHOOD, B. S. and SHUKLA, S. K. (2023) In-depth Review of Integration of AI in Cloud Computing. In: Proceedings of the 2023 3rd International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 1431–1434. https://doi.org/10.1109/ICACITE57410.2023.10182738
- PAPAIOANNOU, T., BONVIN, N. and ABERER, K. (2012) Scalia: An adaptive scheme for efficient multi-cloud storage. In: High Performance Computing. Networking, Storage and Analysis (SC). 2012 International Conference. ACM, 1-10.
- PARASHAR, V., KASHYAP, R., RIZWAN, A., KARRAS, D. A., ALTAMIRANO, G. C., DIXIT, E. and AHMADI, F. (2022) Aggregation-Based Dynamic Channel Bonding to Maximize the Performance of Wireless Local Area Networks (WLAN). Wireless Communications and Mobile Computing, 2022, Article ID 4464447, 1-11. https://doi.org/10.1155/2022/4464447
- PRASAD, N., PANDIAN, P. K. G., NUGURI, S., SAOJI, R. and DEVAGUPTAPU, B. (2024) Integration of Cloud Computing, Artificial Intelligence, and Machine Learning for Enhanced Data Analytics. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 11–20.
- RAO, R. and RAO, S. (2012) Application of Artificial Neural Networks in Capacity Planning of Cloud Based IT Infrastructure. In: IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 1-4.
- ROBERTSON, J., FOSSACECA, J. M. and BENNETT, K. W. (2021) A Cloud-Based Computing Framework for Artificial Intelligence Innovation in Support of Multidomain Operations. IEEE Transactions on Engineering Management, 69(6), 3913–3922. https://doi.org/10.1109/TEM.2021.3088382
- SATHYARAJ, R., KANTHAVEL, R., CAVALIERE, L. P. L., VYAS, S. and MAHESWARI, S. (2022) Analysis on Prediction of COVID-19 with Machine Learning Algorithms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 30 (Supplement 1), 67–82.
- SINGH, P. and SHARMA, A. (2019) Heuristic Approaches for Efficient Cloud Resource Management and Load Balancing. Future Generation Computer Systems, 92, 66-80.
- SUTTON, R. S. and BARTO, A. G. (2018) Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
- TANIMOTO, S., SAKURADA, Y., SEKI, Y., IWASHITA, M., MATSUI, S., SATO, H. and KANAI, A. (2013) A study of data management in hybrid cloud configuration. In: Proceedings of the 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel / Distributed Computing. IEEE, 381-386.
- VAN HASSELT, H. and WIERING, M. A. (2007) Reinforcement learning in continuous action spaces. In: 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, IEEE, 272–279.
- VAN HASSELT, H., GUEZ, A. and SILVER, D. (2016) Deep reinforcement learning with double Q- Learning. AAAI, 2094–2100.
- VENGEROV, D. (2008) A reinforcement learning framework for online data migration in hierarchical storage systems. The Journal of Supercomputing, 43, 1, 1-19.
- VOAS, J. and ZHANG, J. (2009) Cloud computing: New wine or just a new bottle? IT Professional, 11, 15–17.
- WAN, J., YANG, J., WANG, Z. and HUA, Q. (2018) Artificial Intelligence for Cloud-Assisted Smart Factory. IEEE Access, 6, 55419 - 55430. doi: 10.1109/ACCESS.2018.2871724.
- WHITESON, S. (2012) Evolutionary Computation for Reinforcement Learning. Springer, Heidelberg-New York-Dordrecht-London, 325–355.
- XU, C.-Z., RAO, J. and BU, X. (2012) A unified reinforcement learning approach for autonomic cloud management. Journal of Parallel and Distributed Computing, 72, 2, 95–105.
- ZHANG, Y., WANG, Y. and LIU, J. (2021) AI-Driven Resource Management for Cloud-Based Data Services. IEEE Transactions on Cloud Computing, 9(4), 1230–1242. https://doi.org/10.1109/TCC.2020.2994822
- ZHENG, Y. and WEN, X. (2021) The Application of Artificial Intelligence Technology in Cloud Computing Environment Resources. Journal of Web Engineering, 20(6), 1853–1866. https://doi.org/10.13052/jwe1540-9589.2067.
- ZHOU, A. C., HE, B., CHENG, X. and LAU, C. T. (2015) A declarative optimization engine for resource provisioning of scientific workflows in iaas clouds. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’15. New York, NY, USA. ACM, 223–234.
- ZHOU, Z. and LIU, X. (2018) GPU-Accelerated Security Algorithms for Cloud-based Authentication Systems. Journal of Cloud Computing: Advances, Systems, and Applications, 7(1), 25-42.
- ZULUAGA, M., KRAUSE, A. and PUSCHEL, M. (2016) E-pal: An active learning approach to the multi-objective optimization problem. Journal of Machine Learning Research, 17, 1–32.