Have a personal or library account? Click to login
Advancing COVID-19 diagnostics with explainable AI techniques from IoT-driven gene expression data Cover

Advancing COVID-19 diagnostics with explainable AI techniques from IoT-driven gene expression data

Open Access
|Aug 2025

References

  1. Aghalya, S., Rao, N. V., Roy, R. R., Srinivasan, C. and Premi, G. (2023) Real-time monitoring and prediction of respiratory diseases using IoT and machine learning. In: 2023 Second International Conference on Smart Technologies for Smart Nation (SmartTechCon). IEEE, 635-640.
  2. Arowolo, M. O., Ogundokun, R. O., Misra, S., Agboola, B. D. and Gupta, B. (2022) Machine learning-based IoT system for COVID-19 epidemics. Computing, 105(4), 831–847. https://doi.org/10.1007/s00607-022-01057-6
  3. Deebak, B. D. and Al-Turjman, F. (2023) EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats. Sensors, 23(6), 2995. https://doi.org/10.3390/s23062995
  4. Dong, X., Matthews, D. A., Gallo, G., Darby, A., Donovan-Banfield, I., Goldswain, H., MacGill, T., Myers, T., Orr, R., Bailey, D., Carroll, M. W. and Hiscox, J. A. (2025) Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time. Nucleic Acids Research, 53(4). https://doi.org/10.1093/nar/gkaf077
  5. Gürsoy, E. and Kaya, Y. (2023) An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works. Multimedia Systems, 29(3), 1603–1627. https://doi.org/10.1007/s00530-023-01083-0
  6. Hossen, Md. J., Ramanathan, T. T. and Al Mamun, A. (2024) An Ensemble Feature Selection Approach-Based Machine Learning Classifiers for Prediction of COVID-19 Disease. International Journal of Telemedicine and Applications, 2024, 1–10. https://doi.org/10.1155/2024/8188904
  7. Kar, S. and Ganguly, M. (2024) Application of genomic signal processing as a tool for high-performance classification of SARS-CoV-2 variants: a machine learning-based approach. Soft Computing, 28 (4), 2891–2918. https://doi.org/10.1007/s00500-023-09577-9
  8. Khan, A., Khan, S. H., Saif, M., Batool, A., Sohail, A. and Waleed Khan, M. (2023) A Survey of Deep Learning Techniques for the Analysis of COVID-19 and their usability for Detecting Omicron. Journal of Experimental & Theoretical Artificial Intelligence, 36 (8), 1779–1821. https://doi.org/10.1080/0952813x.2023.2165724
  9. Khan, H., Kushwah, K. K., Singh, S., Urkude, H., Maurya, M. R. and Sadasivuni, K. K. (2021) Smart technologies driven approaches to tackle COVID-19 pandemic: a review. 3 Biotech, 11(2). https://doi.org/10.1007/s13205-020-02581-y
  10. Kumar, D., Sood, S. K. and Rawat, K. S. (2023) IoT-enabled technologies for controlling COVID-19 Spread: A scientometric analysis using CiteS-pace. Internet of Things, 23, 100863. https://doi.org/10.1016/j.iot.2023.100863
  11. Lee, P., Kim, H., Zitouni, M. S., Khandoker, A., Jelinek, H. F., Hadjileontiadis, L., Lee, U. and Jeong, Y. (2022) Trends in Smart Helmets With Multimodal Sensing for Health and Safety: Scoping Review. JMIR mHealth uHealth, 10(11), e40797. https://doi.org/10.2196/40797
  12. Li, H., Zhou, Y., Zhao, N., Wang, Y., Lai, Y., Zeng, F. and Yang, F. (2024a) ISMI-VAE: A deep learning model for classifying disease cells using gene expression and SNV data. Computers in Biology and Medicine, 175, 108485. https://doi.org/10.1016/j.compbiomed.2024.108485
  13. Li, L., Li, C., Li, N., Zou, D., Zhao, W., Luo, H., Xue, Y., Zhang, Z., Bao, Y. and Song, S. (2024b) Machine Learning Early Detection of SARS-CoV-2 High-Risk Variants. Advanced Science, 11(45). https://doi.org/10.1002/advs.202405058
  14. Lohaj, O., Paralič, J., Bednár, P., Paraličová, Z. and Huba, M. (2023) Unraveling COVID-19 Dynamics via Machine Learning and XAI: Investigating Variant Influence and Prognostic Classification. Machine Learning and Knowledge Extraction, 5(4), 1266–1281. https://doi.org/10.3390/make5040064
  15. Matson, R. P., Comba, I. Y., Silvert, E., Niesen, M. J. M., Murugadoss, K., Patwardhan, D., Suratekar, R., Goel, E.-G., Poelaert, B. J., Wan, K. K., Brimacombe, K. R., Venkatakrishnan, A. and Soundararajan, V. (2024) A deep learning approach predicting 616 P. Santosh Kumar Patra and B. Tripathy the activity of COVID-19 therapeutics and vaccines against emerging variants. NPJ Systems Biology and Applications, 10 (1). https://doi.org/10.1038/s41540-024-00471-0
  16. Mick, E., Kamm, J., Pisco, A. O., Ratnasiri, K., Babik, J. M., Castañeda, G., DeRisi, J. L., Detweiler, A. M., Hao, S. L., Kangelaris, K. N., Kumar, G. R., Li, L. M., Mann, S. A., Neff, N., Prasad, P. A., Serpa, P. H., Shah, S. J., Spottiswoode, N., Tan, M. and Langelier, C. (2020) Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19587-y
  17. Mohtasham, F., Pourhoseingholi, M., Hashemi Nazari, S. S., Kavousi, K. and Zali, M. R. (2024) Comparative analysis of feature selection techniques for COVID-19 dataset. Scientific Reports, 14(1), 18627 . https://doi.org/10.1038/s41598-024-69209-6
  18. Nasser, N., Emad-ul-Haq, Q., Imran, M., Ali, A., Razzak, I. and Al-Helali, A. (2021) A smart healthcare framework for detection and monitoring of COVID-19 using IoT and cloud computing. Neural Computing and Applications, 35(19), 13775–13789. https://doi.org/10.1007/s00521-021-06396-7
  19. Niazkar, H. R., Moshari, J., Khajavi, A., Ghorbani, M., Niazkar, M. and Negari, A. (2024) Application of multi-gene genetic programming to the prognosis prediction of COVID-19 using routine hematological variables. Scientific Reports, 14(1), 2043. https://doi.org/10.1038/s41598-024-52529-y.
  20. Qayyum, A., Benzinou, A., Saidani, O., Alhayan, F., Khan, M. A., Masood, A. and Mazher, M. (2024) Assessment and classification of COVID-19 DNA sequence using pairwise features concatenation from multi-transformer and deep features with machine learning models. SLAS Technology, 29(4), 100147. https://doi.org/10.1016/j.slast.2024.100147.
  21. Rahmadeyan, A., Mustakim, Ocviani, R., Sarah, S. and Ardiansyah, F. (2024) Classification of COVID-19 data using decision tree optimized with particle swarm optimization and genetic algorithm. In: 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). IEEE, 1-5. https://doi.org/10.1109/icetsis61505.2024.10459540
  22. Saleh, M. A., Serte, S., Turjman, F. A., Abdulkadir, R. A., Ameen, Z. S., and Ozsoz, M. (2023) Deep learning-based feature extraction coupled with multi class SVM for COVID-19 detection in the IoT era. International Journal of Nanotechnology, 20(1/2/3/4), 7–24. https://doi.org/10.1504/ijnt.2023.131109
  23. Santosh Kumar Patra, P. and Tripathy, B. (2024) Hybrid optimal feature selection-based iterative deep convolution learning for COVID-19 classification system. Computers in Biology and Medicine, 181, 109031. https://doi.org/10.1016/j.compbiomed.2024.109031
  24. Santosh Kumar Patra, P. and Tripathy, B. (2025) A Hybrid Feature Optimized Framework for Enhanced COVID-19 Detection with IoT Sensor Data. Cuestiones de Fisioterapia, 54(2), 2695–2703. https://doi.org/10.48047/nxz91k56
  25. Shahzad, A., Zafar, B., Ali, N., Jamil, U., Alghadhban, A. J., Assam, M., Ghamry, N. A. and Eldin, E. T. (2022) COVID-19 Vaccines Related User’s Response Categorization Using Machine Learning Techniques. Computation, 10(8), 141. https://doi.org/10.3390/computation10080141
  26. Shi, Y., Ma, Y., Zheng, Z., Qin, Y., Du, Z. and Liu, J. (2024) Development and validation of a predicting nomogram for in-hospital mortality of COVID-19 Omicron variant: A cohort study of 1324 cases in Beijing Anzhen Hospital. Heliyon, 10(7), e28627. https://doi.org/10.1016/j.heliyon.2024.e28627
  27. Sitjar, J., Tsai, H.-P., Lee, H., Chang, C.-W., Wu, X.-N. and Liao, J.-D. (2025) Fast screening of COVID-19 inpatient samples by integrating machine learning and label-free SERS methods. Analytica Chimica Acta, 1350, 343872. https://doi.org/10.1016/j.aca.2025.343872
  28. Talib, M. A., Afadar, Y., Nasir, Q., Nassif, A. B., Hijazi, H. and Hasasneh, A. (2024) A tree-based explainable AI model for early detection of Covid-19 using physiological data. BMC Medical Informatics and Decision Making, 24(1), 179. https://doi.org/10.1186/s12911-024-02576-2.
  29. Talukder, Md. A., Layek, Md. A., Kazi, M., Uddin, Md. A. and Aryal, S. (2024) Empowering COVID-19 detection: Optimizing performance through fine-tuned EfficientNet deep learning architecture. Computers in Biology and Medicine, 168, 107789. https://doi.org/10.1016/j.compbiomed.2023.107789
  30. Ulvi Saygi Ayvaci, M., Jacobi, V. S., Ryu, Y., Gundreddy, S. P. S. and Tanriover, B. (2025) Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes. The American Journal of Medicine, 138(2), 228-235.e1. https://doi.org/10.1016/j.amjmed.2024.10.011
  31. Venkatachala Appa Swamy, M., Periyasamy, J., Thangavel, M., Khan, S. B., Almusharraf, A., Santhanam, P., Ramaraj, V. and Elsisi, M. (2023) Design and Development of IoT and Deep Ensemble Learning Based Model for Disease Monitoring and Prediction. Diagnostics, 13 (11), 1942. https://doi.org/10.3390/diagnostics13111942
  32. Wang, J. and Safo, S. E. (2024) Deep IDA: a deep learning approach for integrative discriminant analysis of multi-omics data with feature ranking— an application to COVID-19. Bioinformatics Advances, 4 (1), vbae060. https://doi.org/10.1093/bioadv/vbae060.
  33. Yadav, S. K., Mehra, M., Mishra, H. R. and Akhter, Y. (2025) Interpreting the COVID-19 infection geospatial data of Indian provinces for Alpha, Delta and Omicron variants using ARIMA and machine learning. International Journal of Biomathematics. https://doi.org/10.1142/s1793524525500135
  34. Yagin, F. H., Cicek, ˙I. B., Alkhateeb, A., Yagin, B., Colak, C., Azzeh, M. and Akbulut, S. (2023) Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Computers in Biology and Medicine, 154, 106619. https://doi.org/10.1016/j.compbiomed.2023.106619
  35. Zeng, J., Duarte, P. A., Ma, Y., Savchenko, O., Shoute, L., Khaniani, Y., Babiuk, S., Zhuo, R., Abdelrasoul, G. N., Charlton, C., Kanji, J. N., Babiuk, L., Edward, C. and Chen, J. (2022) An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosensors and Bioelectronics, 213, 114476. https://doi.org/10.1016/j.bios.2022.114476
DOI: https://doi.org/10.2478/candc-2024-0023 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 569 - 618
Submitted on: Oct 1, 2024
Accepted on: Apr 1, 2025
Published on: Aug 26, 2025
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 P. Santosh Kumar Patra, Biswajit Tripathy, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.