References
- A
ghalya , S., Rao , N. V., Roy , R. R., Srinivasan , C.and Premi , G. (2023) Real-time monitoring and prediction of respiratory diseases using IoT and machine learning. In: 2023 Second International Conference on Smart Technologies for Smart Nation (SmartTechCon). IEEE, 635-640. - A
rowolo , M. O., Ogundokun , R. O., Misra , S., Agboola , B. D.and Gupta , B. (2022) Machine learning-based IoT system for COVID-19 epidemics. Computing, 105(4), 831–847. https://doi.org/10.1007/s00607-022-01057-6 - D
eebak , B. D.and Al -Turjman , F. (2023) EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats. Sensors, 23(6), 2995. https://doi.org/10.3390/s23062995 - D
ong , X., Matthews , D. A., Gallo , G., Darby , A., Donovan -Banfield , I., Goldswain , H., Mac Gill , T., Myers , T., Orr , R., Bailey , D., Carroll , M. W.and Hiscox , J. A. (2025) Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time. Nucleic Acids Research, 53(4). https://doi.org/10.1093/nar/gkaf077 - G
ürsoy , E.and Kaya , Y. (2023) An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works. Multimedia Systems, 29(3), 1603–1627. https://doi.org/10.1007/s00530-023-01083-0 - H
ossen , Md . J., Ramanathan , T. T.and Al Mamun , A. (2024) An Ensemble Feature Selection Approach-Based Machine Learning Classifiers for Prediction of COVID-19 Disease. International Journal of Telemedicine and Applications, 2024, 1–10. https://doi.org/10.1155/2024/8188904 - K
ar , S.and Ganguly , M. (2024) Application of genomic signal processing as a tool for high-performance classification of SARS-CoV-2 variants: a machine learning-based approach. Soft Computing, 28 (4), 2891–2918. https://doi.org/10.1007/s00500-023-09577-9 - K
han , A., Khan , S. H., Saif , M., Batool , A., Sohail , A.and Waleed Khan , M. (2023) A Survey of Deep Learning Techniques for the Analysis of COVID-19 and their usability for Detecting Omicron. Journal of Experimental & Theoretical Artificial Intelligence, 36 (8), 1779–1821. https://doi.org/10.1080/0952813x.2023.2165724 - K
han , H., Kushwah , K. K., Singh , S., Urkude , H., Maurya , M. R.and Sadasivuni , K. K. (2021) Smart technologies driven approaches to tackle COVID-19 pandemic: a review. 3 Biotech, 11(2). https://doi.org/10.1007/s13205-020-02581-y - K
umar , D., Sood , S. K.and Rawat , K. S. (2023) IoT-enabled technologies for controlling COVID-19 Spread: A scientometric analysis using CiteS-pace. Internet of Things, 23, 100863. https://doi.org/10.1016/j.iot.2023.100863 - L
ee , P., Kim , H., Zitouni , M. S., Khandoker , A., Jelinek , H. F., Hadjileontiadis , L., Lee , U.and Jeong , Y. (2022) Trends in Smart Helmets With Multimodal Sensing for Health and Safety: Scoping Review. JMIR mHealth uHealth, 10(11), e40797. https://doi.org/10.2196/40797 - L
i , H., Zhou , Y., Zhao , N., Wang , Y., Lai , Y., Zeng , F.and Yang , F. (2024a) ISMI-VAE: A deep learning model for classifying disease cells using gene expression and SNV data. Computers in Biology and Medicine, 175, 108485. https://doi.org/10.1016/j.compbiomed.2024.108485 - L
i , L., Li , C., Li , N., Zou , D., Zhao , W., Luo , H., Xue , Y., Zhang , Z., Bao , Y.and Song , S. (2024b) Machine Learning Early Detection of SARS-CoV-2 High-Risk Variants. Advanced Science, 11(45). https://doi.org/10.1002/advs.202405058 - L
ohaj , O., Paralič , J., Bednár , P., Paraličová , Z.and Huba , M. (2023) Unraveling COVID-19 Dynamics via Machine Learning and XAI: Investigating Variant Influence and Prognostic Classification. Machine Learning and Knowledge Extraction, 5(4), 1266–1281. https://doi.org/10.3390/make5040064 - M
atson , R. P., Comba , I. Y., Silvert , E., Niesen , M. J. M., Murugadoss , K., Patwardhan , D., Suratekar , R., Goel , E.-G., Poelaert , B. J., Wan , K. K., Brimacombe , K. R., Venkatakrishnan , A.and Soundararajan , V. (2024) A deep learning approach predicting 616 P. Santosh Kumar Patra and B. Tripathy the activity of COVID-19 therapeutics and vaccines against emerging variants. NPJ Systems Biology and Applications, 10 (1). https://doi.org/10.1038/s41540-024-00471-0 - M
ick , E., Kamm , J., Pisco , A. O., Ratnasiri , K., Babik , J. M., Castañeda , G., De Risi , J. L., Detweiler , A. M., Hao , S. L., Kangelaris , K. N., Kumar , G. R., Li , L. M., Mann , S. A., Neff , N., Prasad , P. A., Serpa , P. H., Shah , S. J., Spottiswoode , N., Tan , M.and Langelier , C. (2020) Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19587-y - M
ohtasham , F., Pourhoseingholi , M., Hashemi Nazari , S. S., Kavousi , K.and Zali , M. R. (2024) Comparative analysis of feature selection techniques for COVID-19 dataset. Scientific Reports, 14(1), 18627 . https://doi.org/10.1038/s41598-024-69209-6 - N
asser , N., Emad -ul -Haq , Q., Imran , M., Ali , A., Razzak , I.and Al -Helali , A. (2021) A smart healthcare framework for detection and monitoring of COVID-19 using IoT and cloud computing. Neural Computing and Applications, 35(19), 13775–13789. https://doi.org/10.1007/s00521-021-06396-7 - N
iazkar , H. R., Moshari , J., Khajavi , A., Ghorbani , M., Niazkar , M.and Negari , A. (2024) Application of multi-gene genetic programming to the prognosis prediction of COVID-19 using routine hematological variables. Scientific Reports, 14(1), 2043. https://doi.org/10.1038/s41598-024-52529-y. - Q
ayyum , A., Benzinou , A., Saidani , O., Alhayan , F., Khan , M. A., Masood , A.and Mazher , M. (2024) Assessment and classification of COVID-19 DNA sequence using pairwise features concatenation from multi-transformer and deep features with machine learning models. SLAS Technology, 29(4), 100147. https://doi.org/10.1016/j.slast.2024.100147. - R
ahmadeyan , A., Mustakim , Ocviani , R., Sarah , S.and Ardiansyah , F. (2024) Classification of COVID-19 data using decision tree optimized with particle swarm optimization and genetic algorithm. In: 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). IEEE, 1-5. https://doi.org/10.1109/icetsis61505.2024.10459540 - S
aleh , M. A., Serte , S., Turjman , F. A., Abdulkadir , R. A., Ameen , Z. S.,and Ozsoz , M. (2023) Deep learning-based feature extraction coupled with multi class SVM for COVID-19 detection in the IoT era. International Journal of Nanotechnology, 20(1/2/3/4), 7–24. https://doi.org/10.1504/ijnt.2023.131109 - S
antosh Kumar Patra , P.and Tripathy , B. (2024) Hybrid optimal feature selection-based iterative deep convolution learning for COVID-19 classification system. Computers in Biology and Medicine, 181, 109031. https://doi.org/10.1016/j.compbiomed.2024.109031 - S
antosh Kumar Patra , P.and Tripathy , B. (2025) A Hybrid Feature Optimized Framework for Enhanced COVID-19 Detection with IoT Sensor Data. Cuestiones de Fisioterapia, 54(2), 2695–2703. https://doi.org/10.48047/nxz91k56 - S
hahzad , A., Zafar , B., Ali , N., Jamil , U., Alghadhban , A. J., Assam , M., Ghamry , N. A.and Eldin , E. T. (2022) COVID-19 Vaccines Related User’s Response Categorization Using Machine Learning Techniques. Computation, 10(8), 141. https://doi.org/10.3390/computation10080141 - S
hi , Y., Ma , Y., Zheng , Z., Qin , Y., Du , Z.and Liu , J. (2024) Development and validation of a predicting nomogram for in-hospital mortality of COVID-19 Omicron variant: A cohort study of 1324 cases in Beijing Anzhen Hospital. Heliyon, 10(7), e28627. https://doi.org/10.1016/j.heliyon.2024.e28627 - S
itjar , J., Tsai , H.-P., Lee , H., Chang , C.-W., Wu , X.-N.and Liao , J.-D. (2025) Fast screening of COVID-19 inpatient samples by integrating machine learning and label-free SERS methods. Analytica Chimica Acta, 1350, 343872. https://doi.org/10.1016/j.aca.2025.343872 - T
alib , M. A., Afadar , Y., Nasir , Q., Nassif , A. B., Hijazi , H.and Hasasneh , A. (2024) A tree-based explainable AI model for early detection of Covid-19 using physiological data. BMC Medical Informatics and Decision Making, 24(1), 179. https://doi.org/10.1186/s12911-024-02576-2. - T
alukder , Md . A., Layek , Md . A., Kazi , M., Uddin , Md . A.and Aryal , S. (2024) Empowering COVID-19 detection: Optimizing performance through fine-tuned EfficientNet deep learning architecture. Computers in Biology and Medicine, 168, 107789. https://doi.org/10.1016/j.compbiomed.2023.107789 - U
lvi Saygi Ayvaci , M., Jacobi , V. S., Ryu , Y., Gundreddy , S. P. S.and Tanriover , B. (2025) Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes. The American Journal of Medicine, 138(2), 228-235.e1. https://doi.org/10.1016/j.amjmed.2024.10.011 - V
enkatachala Appa Swamy , M., Periyasamy , J., Thangavel , M., Khan , S. B., Almusharraf , A., Santhanam , P., Ramaraj , V.and Elsisi , M. (2023) Design and Development of IoT and Deep Ensemble Learning Based Model for Disease Monitoring and Prediction. Diagnostics, 13 (11), 1942. https://doi.org/10.3390/diagnostics13111942 - W
ang , J.and Safo , S. E. (2024) Deep IDA: a deep learning approach for integrative discriminant analysis of multi-omics data with feature ranking— an application to COVID-19. Bioinformatics Advances, 4 (1), vbae060. https://doi.org/10.1093/bioadv/vbae060. - Y
adav , S. K., Mehra , M., Mishra , H. R.and Akhter , Y. (2025) Interpreting the COVID-19 infection geospatial data of Indian provinces for Alpha, Delta and Omicron variants using ARIMA and machine learning. International Journal of Biomathematics. https://doi.org/10.1142/s1793524525500135 - Y
agin , F. H., Cicek , ˙I. B., Alkhateeb , A., Yagin , B., Colak , C., Azzeh , M.and Akbulut , S. (2023) Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Computers in Biology and Medicine, 154, 106619. https://doi.org/10.1016/j.compbiomed.2023.106619 - Z
eng , J., Duarte , P. A., Ma , Y., Savchenko , O., Shoute , L., Khaniani , Y., Babiuk , S., Zhuo , R., Abdelrasoul , G. N., Charlton , C., Kanji , J. N., Babiuk , L., Edward , C.and Chen , J. (2022) An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosensors and Bioelectronics, 213, 114476. https://doi.org/10.1016/j.bios.2022.114476