Have a personal or library account? Click to login
Approximate optimality conditions for approximate efficiency in semi-infinite multiobjective fractional programming problem Cover

Approximate optimality conditions for approximate efficiency in semi-infinite multiobjective fractional programming problem

Open Access
|May 2025

References

  1. Bot, R. I. (2009) Conjugate Duality in Convex Optimization. 637. Springer Science & Business Media.
  2. Bot, R. I., Grad, S.-M. and Wanka, G. (2009) Duality in Vector Optimization. Springer Science & Business Media.
  3. Burachik, R. and Jeyakumar, V. (2005) A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal., 15: 540–554.
  4. Chuong, T. D. (2016) Nondifferentiable fractional semi-infinite multiobjective optimization problems. Operations Research Letters, 44(2): 260–266.
  5. Chuong, T. D. and Kim, D. S. (2014) Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl., 160(3): 748–762.
  6. Deng, S. (1997) On approximate solutions in convex vector optimization. SIAM Journal on Control and Optimization, 35(6): 2128–2136.
  7. Dutta, J. and Vetrivel, V. (2001) On approximate minima in vector optimization. Numer. Funct. Anal. Optim., 22(7-8): 845–859.
  8. Goberna, M. A. and López Cerda, M. A. (1998) Linear Semi-Infinite Optimization. Wiley. Chichester.
  9. Guo, F. and Jiao, L. (2021) On solving a class of fractional semi-infinite polynomial programming problems. Comput. Optim. Appl., 80(2): 439–481.
  10. Gutiérrez, C., Jiménez, B. and Novo, V. (2005) Multiplier rules and saddlepoint theorems for Helbig’s approximate solutions in convex Pareto problems. J. Glob. Optim., 32(3): 367–383.
  11. Gutiérrez, C., Jiménez, B., and Novo, V. (2006) ǫ-Pareto optimality conditions for convex multiobjective programming via Max function. Numer. Funct. Anal. Optim., 27(1): 57–70.
  12. Jeyakumar, V. (2003) Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim., 13(4): 947–959.
  13. Jeyakumar, V., Lee, G. M. and Dinh, N. (2003) New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim., 14(2): 534–547.
  14. Jeyakumar, V., Rubinov, A. M., Glover, B. M. and Ishizuka, Y. (1996) Inequality systems and global optimization. J. Math. Anal. Appl., 202(3): 900–919.
  15. Jiao, L., Lee, J. H. and Zhou, Y. (2020) A hybrid approach for finding efficient solutions in vector optimization with sos-convex polynomials. Oper. Res. Lett., 48: 188–194.
  16. Kerdkaew, J. and Wangkeeree, R. (2020) Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. J. Ind. Manag. Optim., 16: 2651–2673.
  17. Kim, M. H., Kim, G. S. and Lee, G. M. (2011) On ǫ-optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory Appl., 2011: 13.
  18. Kuroiwa, D. and Lee, G. M. (2012) On robust multiobjective optimization. Vietnam J. Math., 40: 305–317.
  19. Kutateladze, S. S. (1979) Convex ɛ-programming. Sov. Math., Dokl., 20: 391–393.
  20. Lee, J. H. and Lee, G. M. (2018) On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res., 269(1-2): 419–438.
  21. Li, X.-B., Wang, Q.-L. and Lin, Z. (2019) Optimality conditions and duality for minimax fractional programming problems with data uncertainty. J. Ind. Manag. Optim., 15(3): 1133–1151.
  22. Liu, J., Long, X.-J. and Huang, N.-J. (2023) Approximate optimality conditions and mixed type duality for semi-infinite multiobjective programming problems involving tangential subdifferentials. J. Ind. Manag. Optim., 19(9): 6500–6519.
  23. Liu, J. C. (1992) ɛ-duality theorem of nondifferentiable nonconvex multiobjective programming. J. Optim. Theory Appl., 74(3): 567–568.
  24. Liu, J. C. (1996) ɛ-Pareto optimality for nondifferentiable multiobjective programming via penalty function. J. Math. Anal. Appl., 198(1): 248— -61.
  25. Liu, J.-C. and Yokoyama, K. (1999) ɛ-optimality and duality for multiobjective fractional programming. Comput. Math. Appl., 37(8): 119–128.
  26. Loridan, P. (1984) ɛ-solutions in vector minimization problems. J. Optim. Theory Appl., 43: 265–276.
  27. Moustaid, M., Laghdir, M. and Dali, I. (2022a) Sequential optimality conditions of approximate proper efficiency for a multiobjective fractional programming problem. SeMA Journal, 80(4), 611–627.
  28. Moustaid, M. B., Rikouane, A. Dali, I. and Laghdir, M. (2022b) Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brondsted-Rockafellar approximate subdifferential. Rend. Circ. Mat. Palermo (2), 71(2): 737–754.
  29. Pham, T.-H. (2023) On isolated/properly efficient solutions in nonsmooth robust semi-infinite multiobjective optimization. Bull. Malays. Math. Sci. Soc. (2), 46(2): 31.
  30. Singh, V., Jayswal, A., Stancu-Minasian, I. and Rusu-Stancu, A. M. (2021) Isolated and proper efficiencies for semi-infinite multiobjective fractional problems. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 83(3): 111–124.
  31. Sun, X., Feng, X. and Teo, K. L. (2022) Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data. Optim. Lett., 16(5): 1457–1476.
  32. Sun, X., Huang, J. and Teo, K. L. (2024) On semidefinite programming relaxations for a class of robust sos-convex polynomial optimization problems. J. Glob. Optim., 88: 755–776.
  33. Sun, X., Tan, W. and Teo, K. L. (2023) Characterizing a class of robust vector polynomial optimization via sum of squares conditions. J. Optim. Theory Appl., 197: 737–764.
  34. Sun, X., Teo, K. L. and Long, X.-J. (2021) Some characterizations of approximate solutions for robust semi-infinite optimization problems. J. Glob. Optim., 191: 281–310.
  35. White, D. J. (1986) Epsilon efficiency. J. Optim. Theory Appl., 49: 319–337.
  36. Zeng, J., Xu, P. and Fu, H. (2019) On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data. J. Inequal. Appl., 2019: 16.
DOI: https://doi.org/10.2478/candc-2024-0019 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 429 - 455
Submitted on: Apr 1, 2024
|
Accepted on: Dec 1, 2024
|
Published on: May 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohamed Bilal Moustaid, Issam Dali, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.