References
- B
ot , R. I. (2009) Conjugate Duality in Convex Optimization. 637. Springer Science & Business Media. - B
ot , R. I., Grad , S.-M.and Wanka , G. (2009) Duality in Vector Optimization. Springer Science & Business Media. - B
urachik , R.and Jeyakumar , V. (2005) A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal., 15: 540–554. - C
huong , T. D. (2016) Nondifferentiable fractional semi-infinite multiobjective optimization problems. Operations Research Letters, 44(2): 260–266. - C
huong , T. D.and Kim , D. S. (2014) Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl., 160(3): 748–762. - D
eng , S. (1997) On approximate solutions in convex vector optimization. SIAM Journal on Control and Optimization, 35(6): 2128–2136. - D
utta , J.and Vetrivel , V. (2001) On approximate minima in vector optimization. Numer. Funct. Anal. Optim., 22(7-8): 845–859. - G
oberna , M. A.and López Cerda , M. A. (1998) Linear Semi-Infinite Optimization. Wiley. Chichester. - G
uo , F.and Jiao , L. (2021) On solving a class of fractional semi-infinite polynomial programming problems. Comput. Optim. Appl., 80(2): 439–481. - G
utiérrez , C., Jiménez , B.and Novo , V. (2005) Multiplier rules and saddlepoint theorems for Helbig’s approximate solutions in convex Pareto problems. J. Glob. Optim., 32(3): 367–383. - G
utiérrez , C., Jiménez , B.,and Novo , V. (2006) ǫ-Pareto optimality conditions for convex multiobjective programming via Max function. Numer. Funct. Anal. Optim., 27(1): 57–70. - J
eyakumar , V. (2003) Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim., 13(4): 947–959. - J
eyakumar , V., Lee , G. M.and Dinh , N. (2003) New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim., 14(2): 534–547. - J
eyakumar , V., Rubinov , A. M., Glover , B. M.and Ishizuka , Y. (1996) Inequality systems and global optimization. J. Math. Anal. Appl., 202(3): 900–919. - J
iao , L., Lee , J. H.and Zhou , Y. (2020) A hybrid approach for finding efficient solutions in vector optimization with sos-convex polynomials. Oper. Res. Lett., 48: 188–194. - K
erdkaew , J.and Wangkeeree , R. (2020) Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. J. Ind. Manag. Optim., 16: 2651–2673. - K
im , M. H., Kim , G. S.and Lee , G. M. (2011) On ǫ-optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory Appl., 2011: 13. - K
uroiwa , D.and Lee , G. M. (2012) On robust multiobjective optimization. Vietnam J. Math., 40: 305–317. - K
utateladze , S. S. (1979) Convex ɛ-programming. Sov. Math., Dokl., 20: 391–393. - L
ee , J. H.and Lee , G. M. (2018) On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res., 269(1-2): 419–438. - L
i , X.-B., Wang , Q.-L.and Lin , Z. (2019) Optimality conditions and duality for minimax fractional programming problems with data uncertainty. J. Ind. Manag. Optim., 15(3): 1133–1151. - L
iu , J., Long , X.-J.and Huang , N.-J. (2023) Approximate optimality conditions and mixed type duality for semi-infinite multiobjective programming problems involving tangential subdifferentials. J. Ind. Manag. Optim., 19(9): 6500–6519. - L
iu , J. C. (1992) ɛ-duality theorem of nondifferentiable nonconvex multiobjective programming. J. Optim. Theory Appl., 74(3): 567–568. - L
iu , J. C. (1996) ɛ-Pareto optimality for nondifferentiable multiobjective programming via penalty function. J. Math. Anal. Appl., 198(1): 248— -61. - L
iu , J.-C.and Yokoyama , K. (1999) ɛ-optimality and duality for multiobjective fractional programming. Comput. Math. Appl., 37(8): 119–128. - L
oridan , P. (1984) ɛ-solutions in vector minimization problems. J. Optim. Theory Appl., 43: 265–276. - M
oustaid , M., Laghdir , M.and Dali , I. (2022a) Sequential optimality conditions of approximate proper efficiency for a multiobjective fractional programming problem. SeMA Journal, 80(4), 611–627. - M
oustaid , M. B., Rikouane , A. Dali , I.and Laghdir , M. (2022b) Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brondsted-Rockafellar approximate subdifferential. Rend. Circ. Mat. Palermo (2), 71(2): 737–754. - P
ham , T.-H. (2023) On isolated/properly efficient solutions in nonsmooth robust semi-infinite multiobjective optimization. Bull. Malays. Math. Sci. Soc. (2), 46(2): 31. - S
ingh , V., Jayswal , A., Stancu -Minasian , I.and Rusu -Stancu , A. M. (2021) Isolated and proper efficiencies for semi-infinite multiobjective fractional problems. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 83(3): 111–124. - S
un , X., Feng , X.and Teo , K. L. (2022) Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data. Optim. Lett., 16(5): 1457–1476. - S
un , X., Huang , J.and Teo , K. L. (2024) On semidefinite programming relaxations for a class of robust sos-convex polynomial optimization problems. J. Glob. Optim., 88: 755–776. - S
un , X., Tan , W.and Teo , K. L. (2023) Characterizing a class of robust vector polynomial optimization via sum of squares conditions. J. Optim. Theory Appl., 197: 737–764. - S
un , X., Teo , K. L.and Long , X.-J. (2021) Some characterizations of approximate solutions for robust semi-infinite optimization problems. J. Glob. Optim., 191: 281–310. - W
hite , D. J. (1986) Epsilon efficiency. J. Optim. Theory Appl., 49: 319–337. - Z
eng , J., Xu , P.and Fu , H. (2019) On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data. J. Inequal. Appl., 2019: 16.