Have a personal or library account? Click to login
Filtering theory for an Ornstein-Uhlenbeck process driven power system dynamics Cover

Filtering theory for an Ornstein-Uhlenbeck process driven power system dynamics

Open Access
|Feb 2025

References

  1. DÖRFLER, F. and BULLO, F. (2010) Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 930-937, DOI: 10.1109/acc.2010.5530690
  2. FUJITA, S. and FUKAO, S. (1970) Error analysis of optimal filtering for coloured noise. IEEE Transactions on Automatic Control, 15(4), 452-454.
  3. GERMANI, A., MANES, C. and PALUMBO, P. (2007) Filtering of stochastic non-linear diferential systems via a Carleman approximation approach. IEEE Transactios of Automatic Control, 52, 2166–2172 .
  4. HÄNGGI, P. and JUNG, P. (1995) Colored noise in dynamical systems. In: I. Prigogine and S. A. Rice., eds., Advances in Chemical Physics. John Wiley and Sons, New York, 239-323.
  5. HIRPARA, R. H. (2020) Filtering theory for a power system dynamics in the presence of stochastic damping coefficient. IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh. 473-476, DOI: 10.1109/TENSYMP50017.2020. 9230651
  6. HIRPARA, R. H. (2021) A stochastic equivalence approach for an Ornstein-Uhlenbeck process driven power system dynamics. Journal of Applied Mathematics, Statistics and Informatics. 17(2), 47-58, DOI: 10.2478/jamsi-2021-0008
  7. HIRPARA, R.H. and SHARMA, S.N. (2015) An Ornstein-Uhlenbeck process-driven power system dynamics. IFAC PapersOnLine. 48(30), 409-414, DOI: 10.1016/j.ifacol.2015.12.413
  8. JAZWINSKI, A.H. (1970) Stochastic Processes and Filtering Theory. Academic Press, New York and London.
  9. KARATZAS, I. and SHREVE, S.E. (1991) Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York.
  10. KUNDUR, P. (1994) Power System Stability and Control. Mc-Graw-Hill, New York.
  11. LIPTSER, R.S. and SHIRYAYEV, A.N. (1977) Statistics of Random Processes. 1st edition. Springer, Berlin.
  12. NAGARSHETH, S.H., BHATT, D.S. and SHARMA, S.N. (2020) Filtering theory for a weakly coloured noise process. Differential Equations and Dynamical Systems. DOI: 10.1007/s12591-020-00553-5.
  13. PUGACHEV, V.S. and SINITSYN, I.N. (1987) Stochastic Differential Systems (Analysis and Filtering). John-Wiley and Sons, Chichester.
  14. SÄRKKÄ, S. and SOLIN, A. (2019) Applied Stochastic Differential Equations. Cambridge University Press.
  15. SCHÄFER, B., MATTHIAE, M., ZHANG, X., ROHDEN, M., TIMME, M. and WITTAUT, D. (2017) Escape Routes, Weak Links and Desynchronization in Fluctuation-driven Networks. Physical Review E. 95, 060203-(1-5), DOI: 10.1103/PhysRevE.95.060203.
  16. SHARMA, S.N. (2009) A Kushner approach for small random perturbations of a stochastic Duffing-van der Pol system. Automatica. 45, 1097–1099.
  17. SIMPSON-PORCO, J.W., DÖRFLER, F. and BULLO, F. (2012) Droop-controlled inverters are Kuramoto oscillators. IFAC Proceedings Volumes, 45(26): 264-269, DOI:10.3182/20120914-2-US-4030.00055
  18. STRATONOVICH, R. L. (1963) Topics in the Theory of Random Noise. vol. 1. Gordon and Breach, New York.
  19. TÖNJES, R. (2010) Synchronization transition in the Kuramoto model with colored noise. Physical Review E. 81, 055201-(1-4), DOI: 10.1103/Phys-RevE.81.055201
  20. ZHU, G. (2022) An Adaptive Fuzzy Neural Network Based On Progressive Gaussian Approximate Filter with Variable Step Size. Information Technology and Control, 51(1), 86-103, DOI: 10.5755/j01.itc.51.1.29776
DOI: https://doi.org/10.2478/candc-2024-0015 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 355 - 370
Submitted on: Nov 1, 2022
|
Accepted on: Nov 1, 2024
|
Published on: Feb 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ravish H. Hirpara, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.