References
- A
l -Homidan , S.and Ansari , Q. H. (2010) Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems. J. Optim. Theory Appl., 144, 1–11. - A
nsari , Q. H.and Lee , G. M. (2010) Nonsmooth vector optimization problems and Minty vector variational inequalities. J. Optim. Theory Appl., 145, 1–16. - A
rana -Jim é nez , M., Ruiz -Garz ó n , G., Rufi á n -Lizana , A.and Gó mez , R. O. (2010) A necessary and sufficient condition for duality in multiobjective variational problems. Eur. J. Oper. Res., 201, 672–681. - C
respi , G. P., Ginchev , I.and Rocca , M. (2004) Variational inequalities in vector optimization. In: F. Giannessi, A. Maugeri, eds., Variational Analysis and Applications. Kluwer Academic, Dordrecht, 79. - C
respi , G. P., Ginchev , I.and Rocca , M. (2008) Some remarks on the Minty vector variational principle. J. Math. Anal. Appl., 345, 165–175. - G
iannessi , F. (1980) Theorems of alternative, quadratic programs and complementarity problems. In: R.W. Cottle, F. Giannessi, and J. L. Lions, eds., Variational Inequalities and Complementarity Problems, 42, 331–365, John Wiley and Sons, Chichester. - G
iannessi , F. (1998) On Minty variational principle. In: F. Gianessi et al., eds, New Trends in Math. Programming. Appl. Opt., APOP 13, 93–99. Kluwer Academic Publishers. - H
anson , M. A. (1964) Bounds for functionally convex optimal control problems. J. Math. Anal. Appl., 8, 84–89. - J
ayswal , A., Singh , S.and Kurdi , A. (2016) Multitime multiobjective variational problems and vector variational-like inequalities. Eur. J. Oper. Res., 254(3), 739–745. - J
ayswal , A.and Singh , S. (2017) Multiobjective variational problems and generalized vector variational-type inequalities. RAIRO Oper. Res., 51, 211–225. - K
im , M.H. (2004) Relations between vector continuous-time program and vector variational-type inequality. J. Appl. Math. Comput., 16, 279–287. - L
ee , G.M. (2000) On Relations between Vector Variational Inequality and Vector Optimization Problem. Progress in Optim., 39, 167–179. - M
iholca , M. (2014) On set-valued optimization problems and vector variational-like inequalities. Optim. Lett., 30, 101–108. - O
veisiha , M.,and Zafarani , J. (2013) Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces. Optim. Lett., 7, 709–721. - R
uiz -Garz ó n , G., Santos , L. B., Rufi á n -Lizana , A.and Arana -Jim é nez , M. (2010) Some relations between Minty variational-like inequality problems and vectorial optimization problems in Banach spaces. Comput. Math. Appl., 60, 2679–2688. - S
antos , L. B., Rojas -Medar , M. A.and Rufi á n -Lizana , A. (2006) Some relations between variational-like inequalities and efficient solutions of certain nonsmooth optimization problems. Int. J. Math. Math. Sci., 2006, 16. - T
reanţă , S.and Guo , Y. (2023) The study of certain optimization problems via variational inequalities. Res. Math. Sci., 10, 7. - T
reanţă , S., Antczak , T.and Saeed , T. (2023) Connections between non-linear optimization problems and associated variational inequalities. Mathematics, 11, 6, 1314. - T
reanţă , S.,and Saeed , T. (2023) On Weak Variational Control Inequalities via Interval Analysis. Mathematics, 11, 9, 2177. - Y
ang , X. M., Yang , X. Q.and Teo , K. L. (2004) Some Remarks on the Minty Vector Variational Inequality. J. Optim. Theory Appl., 121, 193–201. - Y
u , S. J.and Yao , J. C. (1996) On vector variational inequalities. J. Optim. Theory Appl., 89, 749–769. - Y
u , G.and Lu , Y. (2011) Multi-objective Optimization Problems and Vector Variational-like Inequalities Involving Semi-strong E-convexity. Fourth International Joint Conference on Computational Sciences and Optimization, Kunming and Lijiang City, 476–479. IEEE Computer Society.