Have a personal or library account? Click to login
Sufficient approximate optimality condition for the inverse one-phase Stefan problem Cover

Sufficient approximate optimality condition for the inverse one-phase Stefan problem

Open Access
|Jan 2025

References

  1. Abdulla, U. G. (2013) On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 7: 307–340.
  2. Abdulla, U. G. (2016) On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 10: 869–898.
  3. Abdulla, U. G. and Goldfarb, J. (2024) Fréchet differentability in Besov spaces in the optimal control of parabolic free boundary problems. arxiv: 1604.00057, to appear in Inverse and Ill-posed Problems, URL https://arxiv.org/abs/1604.00057.
  4. Abdulla, U. G., Cosgrove, E. and Goldfarb, J. (2017) On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations and Control Theory doi:10.3934/eect. 2017017, .: 319–344.
  5. Budak, B. M. and Vasileva, V. N. (1972) On the solution of the inverse Stefan problem. Soviet Mathematics Doklady, 13: 811–815.
  6. Budak, B. M. and Vasileva, V. N. (1973) On the solution of Stefans converse problem II. USSR Computational Mathematics and Mathematical Physics, 13: 97–110.
  7. Budak, B. M. and Vasileva, V. N. (1974) The solution of the inverse Stefan problem. USSR Computational Mathematics and Mathematical Physics, 13: 130–151.
  8. Goldman, N. L. (1997) Inverse Stefan Problems. Kluwer Academic Publishers Group, Dodrecht.
  9. Lipnicka, M. and Nowakowski, A. (2018) On dual dynamic programming in shape optimization of coupled models. Structural and Multidisciplinary Optimization, doi: 10.1007/s00158-018-2057-5.
  10. Lipnicka, M. and Nowakowski, A. (2018) Sufficient -Optlmality Conditions for Navier-Stokes Flow. Numerical Algorithm. IEEE Conference on Decision and Control (CDC), Miami Beach, FL, 2484–2489, doi: 10.1109/CDC.2018.8619266.
  11. Lipnicka, M. and Nowakowski, A. (2022a) Optimal control using to approximate probability distribution of observation set. Math. Methods Appl. Sci. 1-–16, doi: https://doi.org/10.1002/mma.8391.
  12. Lipnicka, M. and Nowakowski, A. (2022b) Optimal Control in Learning Neural Network. In: H. A. Le Thi, T. Pham Dinh and H. M. Le, eds., Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO. Lecture Notes in Networks and Systems, 363. Springer, Cham. https://doi.org/10.1007/978-3-030-92666-3_26.
  13. Lipnicka, M. and Nowakowski, A. (2023) Learning of neural network with optimal control tools. Engineering Applications of Artificial Intelligence, 121, https://doi.org/10.1016/j.engappai.2023.106033
DOI: https://doi.org/10.2478/candc-2024-0010 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 231 - 246
Submitted on: May 1, 2024
|
Accepted on: Jul 1, 2024
|
Published on: Jan 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marta Lipnicka, Artur Lipnicki, Andrzej Nowakowski, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.