References
- A
llaire , G. (2002) Shape Optimization by the Homogenization Method. Springer-Verlag, New York. - A
mstutz , S.and Andrä , H. (2006) A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2) 573–588. - A
mstutz , S., Giusti , S.M., Novotny , A.A.and de Souza Neto , E.A. (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. International Journal for Numerical Methods in Engineering, 84(6) 733–756. - B
acigalupo , A.and Gambarotta , L. (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Composite Structures, 116 461–476. - B
echterew , P. (1926) Analytical study of the generalized Hooke’s law. Application of the method of coordinate transformation. Zh. Russ. Fiz.-Khim. Obshch. Leningrad. Univ., Fizika, 58(3) 415–416. - B
endsøe , M.P. (1984) Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York. - B
ertoldi , K., Vitelli , V., Christensen , J.and Van Hecke , M. (2017) Flexible mechanical metamaterials. Nature Reviews Materials, .(11) 1–11. - C
alisti , V. (2021) Synthése de microstructures par optimisation topologique, et optimisation de forme d’un problème d’interaction fluide-structure. PhD thesis, Université de Lorraine. - C
alisti , V., Lebée , A., Novotny , A.A.and Sokolowski , J. (2023) Emergence of elastostatic strain-gradient effects from topological optimization. European Journal of Mechanics-A/Solids, 100 104979. - C
éa , J., Garreau , S., Guillaume , P.and Masmoudi , M. (2000) The shape and topological optimizations connection. Computer Methods in Applied Me-chanics and Engineering, 188 713–726. - C
owin , S.C.and Mehrabadi , M.M. (1992) The structure of the linear anisotropic elastic symmetries. Journal of the Mechanics and Physics of Solids, 40(7) 1459–1471. - D
e Saxcé , G.and Vallée , C. (2013) Invariant measures of the lack of symmetry with respect to the symmetry groups of 2D elasticity tensors. Journal of Elasticity, 111(1) 21–39. - E
schenauer , H.A., Kobelev , V.and Schumacher , A. (1994) Bubble method for topology and shape optimization of structures. Structural and Multi-disciplinary Optimization, 8 42–51. - F
errer , A.and Giusti , S.M. (2022) Inverse homogenization using the topological derivative. Engineering Computations, 39(1) 337–353. - F
rançois , M.L.M., Chen , L.and Coret , M. (2017) Elasticity and symmetry of tri-angular lattice materials. International Journal of Solids and Structures, 129 18–27. - G
anghoffer , J.F., Goda , I., Novotny , A.A., Rahouadj , R.and Sokolowski , J. (2018) Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 98(5) 696–717. - G
anghoffer , J.F.and Reda , H. (2021) A variational approach of homogenization of heterogeneous materials towards second gradient continua. Mechanics of Materials, 158 103743. - G
iusti , S.M., Novotny , A.A.,de Souza Neto , E.A.and Feijóo , R.A. (2009) Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids, 57(3) 555–570. - G
reaves , G.N., Greer , A.L., Lakes , R.S.and Rouxel , T. (2011) Poisson’s ratio and modern materials. Nature Materials, 10(11) 823–837. Lakes , R. (1993) Materials with structural hierarchy. Nature, 361(6412) 511–515. - L
iu , Z., Zhang , X., Mao , Y., Zhu , Y.Y., Yang , Z. Chan , C.T.and Sheng , P. (2000) Locally resonant sonic materials. Science, 289(5485) 1734–1736. - L
iu , Y.and Hu , H. (2010) A review on auxetic structures and polymeric materials. Sci. Res. Essays, .(10) 1052–1063. - L
iu , Y.and Zhang , X. (2011) Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 40(5) 2494–2507. - M
ánik , T. (2021) A natural vector/matrix notation applied in an efficient and robust return-mapping algorithm for advanced yield functions. European Journal of Mechanics-A/Solids, 90 104357. - M
ehrabadi , M.M.and Cowin , S.C. (1990) Eigentensors of linear anisotropic elastic materials. The Quarterly Journal of Mechanics and Applied Mathematics, 43(1) 15–41. - M
endez , C.G., Podestá , J.M., Toro , S., Huespe , A.E.and Oliver , X. (2019) Making use of Symmetries in the 3D Elastic Inverse Homogenization Problem. Begell House. - N
ovotny , A.A.and Sokolowski , J. (2012) Topological Derivatives in Shape Optimization. Springer Science & Business Media. - N
ovotny , A.A., Sokolowski , J.and Zochowski , A. (2019) Applications of the Topological Derivative Method. Springer, Cham, 188. - O
lympio , K.R.and Gandhi , F. (2010) Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. Journal of Intelligent Material Systems and Structures, 21(17) 1737–1753. - P
eel , L.D. (2007) Exploration of high and negative Poisson’s ratio elastomer-matrix laminates. Physica Status Solidi (b), 244(3) 988–1003. - P
ironneau , O. (1984) Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York. - P
odestá , J.M., Mendez , C.M., Toro , S.and Huespe , A.E. (2019) Symmetry considerations for topology design in the elastic inverse homogenization problem. Journal of the Mechanics and Physics of Solids, 128 54–78. - P
rawoto , Y. (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Computational Ma-terials Science, 58 140–153. - R
eese , S.P., Maas , S.A.and Weiss , J.A. (2010) Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. Journal of Biomechanics, 43(7) 1394–1400. - R
ossi , N., Yera , R., Mendez , C.G., Toro , S.and Huespe , A.E. (2020) Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries. Computer Methods in Applied Mechanics and Engineering, 359 112760. - R
ossi , N., Podesta , J.M., Bre , F., Mendez , C.G.and Huespe , A.E. (2021) A microarchitecture design methodology to achieve extreme iso-tropic elastic properties of composites based on crystal symmetries. Structural and Multidisciplinary Optimization, 63(5) 2459–2472. - R
ychlewski , J. (1984) On Hooke’s law. Journal of Applied Mathematics and Mechanics, 48(3) 303–314. - S
igmund , O.and Maute , K. (2013) Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 48(6) 1031–1055. - S
ilverberg , J.L., Evans , A.A., Mc Leod , L., Hayward , R.C., Hull , T., Santangelo , C.D.and Cohen , I. (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 345(6197) 647–650. - S
mith , D.R., Pendry , J.B.and Wiltshire , M.C.K. (2004) Metamaterials and negative refractive index. Science, 305(5685) 788–792. - S
okolowski , J.and Zolésio , J.P. (1992) Introduction to Shape Optimization. Springer-Verlag, Berlin. - S
okolowski , J.and Zochowski , A. (1999) On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4) 1251–1272. - S
padoni , A.and Ruzzene , M. (2012) Elastostatic micropolar behavior of a chiral auxetic lattice. Journal of the Mechanics and Physics of Solids, 60(1) 156–171. - V
ianello , M. (1997) An integrity basis for plane elasticity tensors. Archives of Mechanics, 49(1) 197–208. - V
oigt , W. (1910) Lehrbuch der Kristallphysik (mit ausschluss der Kristalloptik). BG Teubner, 34. - V
erchery , G. (1982) Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: J-P. Boehler, ed., Mechanical Behavior of Anisotropic Solids /Comportement Mécanique des Solides Anisotropes. Martinus Nijho Publishers & Editions du CNRS, 93–104. - W
ang , P., Casadei , F., Shan , S., Weaver , J.C.and Bertoldi , K. (2014) Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1) 014301. - W
hitaker , S. (1985) A simple geometrical derivation of the spatial averaging theorem. Chemical Engineering Education, 19(1) 18–52. - W
hitaker , S. (2013) The Method of Volume Averaging. Springer Science & Business Media. 13. - Y
ang , X.Y., Huang , X., Rong , J.H.and Xie , Y.M. (2013) Design of 3D orthotropic materials with prescribed ratios for effective Young’s moduli. Computational Materials Science, 67 229–237. - Y
era , R., Rossi , N., Mendez , C.G.and Huespe , A.E. (2020) Topology design of 2D and 3D elastic material microarchitectures with crystal symmetries displaying isotropic properties close to their theoretical limits. Applied Materials Today, 18 100456.