Have a personal or library account? Click to login
2D mechanical metamaterials synthesized by topology optimization in the different symmetry classes Cover

2D mechanical metamaterials synthesized by topology optimization in the different symmetry classes

Open Access
|Jan 2025

References

  1. Allaire, G. (2002) Shape Optimization by the Homogenization Method. Springer-Verlag, New York.
  2. Amstutz, S. and Andrä, H. (2006) A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2) 573–588.
  3. Amstutz, S., Giusti, S.M., Novotny, A.A. and de Souza Neto, E.A. (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. International Journal for Numerical Methods in Engineering, 84(6) 733–756.
  4. Bacigalupo, A. and Gambarotta, L. (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Composite Structures, 116 461–476.
  5. Bechterew, P. (1926) Analytical study of the generalized Hooke’s law. Application of the method of coordinate transformation. Zh. Russ. Fiz.-Khim. Obshch. Leningrad. Univ., Fizika, 58(3) 415–416.
  6. Bendsøe, M.P. (1984) Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York.
  7. Bertoldi, K., Vitelli, V., Christensen, J. and Van Hecke, M. (2017) Flexible mechanical metamaterials. Nature Reviews Materials, .(11) 1–11.
  8. Calisti, V. (2021) Synthése de microstructures par optimisation topologique, et optimisation de forme d’un problème d’interaction fluide-structure. PhD thesis, Université de Lorraine.
  9. Calisti, V., Lebée, A., Novotny, A.A. and Sokolowski, J. (2023) Emergence of elastostatic strain-gradient effects from topological optimization. European Journal of Mechanics-A/Solids, 100 104979.
  10. Céa, J., Garreau, S., Guillaume, P. and Masmoudi, M. (2000) The shape and topological optimizations connection. Computer Methods in Applied Me-chanics and Engineering, 188 713–726.
  11. Cowin, S.C. and Mehrabadi, M.M. (1992) The structure of the linear anisotropic elastic symmetries. Journal of the Mechanics and Physics of Solids, 40(7) 1459–1471.
  12. De Saxcé, G. and Vallée, C. (2013) Invariant measures of the lack of symmetry with respect to the symmetry groups of 2D elasticity tensors. Journal of Elasticity, 111(1) 21–39.
  13. Eschenauer, H.A., Kobelev, V. and Schumacher, A. (1994) Bubble method for topology and shape optimization of structures. Structural and Multi-disciplinary Optimization, 8 42–51.
  14. Ferrer, A. and Giusti, S.M. (2022) Inverse homogenization using the topological derivative. Engineering Computations, 39(1) 337–353.
  15. François, M.L.M., Chen, L. and Coret, M. (2017) Elasticity and symmetry of tri-angular lattice materials. International Journal of Solids and Structures, 129 18–27.
  16. Ganghoffer, J.F., Goda, I., Novotny, A.A., Rahouadj, R. and Sokolowski, J. (2018) Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 98(5) 696–717.
  17. Ganghoffer, J.F. and Reda, H. (2021) A variational approach of homogenization of heterogeneous materials towards second gradient continua. Mechanics of Materials, 158 103743.
  18. Giusti, S.M., Novotny, A.A., de Souza Neto, E.A. and Feijóo, R.A. (2009) Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids, 57(3) 555–570.
  19. Greaves, G.N., Greer, A.L., Lakes, R.S. and Rouxel, T. (2011) Poisson’s ratio and modern materials. Nature Materials, 10(11) 823–837. Lakes, R. (1993) Materials with structural hierarchy. Nature, 361(6412) 511–515.
  20. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z. Chan, C.T. and Sheng, P. (2000) Locally resonant sonic materials. Science, 289(5485) 1734–1736.
  21. Liu, Y. and Hu, H. (2010) A review on auxetic structures and polymeric materials. Sci. Res. Essays, .(10) 1052–1063.
  22. Liu, Y. and Zhang, X. (2011) Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 40(5) 2494–2507.
  23. Mánik, T. (2021) A natural vector/matrix notation applied in an efficient and robust return-mapping algorithm for advanced yield functions. European Journal of Mechanics-A/Solids, 90 104357.
  24. Mehrabadi, M.M. and Cowin, S.C. (1990) Eigentensors of linear anisotropic elastic materials. The Quarterly Journal of Mechanics and Applied Mathematics, 43(1) 15–41.
  25. Mendez, C.G., Podestá, J.M., Toro, S., Huespe, A.E. and Oliver, X. (2019) Making use of Symmetries in the 3D Elastic Inverse Homogenization Problem. Begell House.
  26. Novotny, A.A. and Sokolowski, J. (2012) Topological Derivatives in Shape Optimization. Springer Science & Business Media.
  27. Novotny, A.A., Sokolowski, J. and Zochowski, A. (2019) Applications of the Topological Derivative Method. Springer, Cham, 188.
  28. Olympio, K.R. and Gandhi, F. (2010) Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. Journal of Intelligent Material Systems and Structures, 21(17) 1737–1753.
  29. Peel, L.D. (2007) Exploration of high and negative Poisson’s ratio elastomer-matrix laminates. Physica Status Solidi (b), 244(3) 988–1003.
  30. Pironneau, O. (1984) Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York.
  31. Podestá, J.M., Mendez, C.M., Toro, S. and Huespe, A.E. (2019) Symmetry considerations for topology design in the elastic inverse homogenization problem. Journal of the Mechanics and Physics of Solids, 128 54–78.
  32. Prawoto, Y. (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Computational Ma-terials Science, 58 140–153.
  33. Reese, S.P., Maas, S.A. and Weiss, J.A. (2010) Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. Journal of Biomechanics, 43(7) 1394–1400.
  34. Rossi, N., Yera, R., Mendez, C.G., Toro, S. and Huespe, A.E. (2020) Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries. Computer Methods in Applied Mechanics and Engineering, 359 112760.
  35. Rossi, N., Podesta, J.M., Bre, F., Mendez, C.G. and Huespe, A.E. (2021) A microarchitecture design methodology to achieve extreme iso-tropic elastic properties of composites based on crystal symmetries. Structural and Multidisciplinary Optimization, 63(5) 2459–2472.
  36. Rychlewski, J. (1984) On Hooke’s law. Journal of Applied Mathematics and Mechanics, 48(3) 303–314.
  37. Sigmund, O. and Maute, K. (2013) Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 48(6) 1031–1055.
  38. Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D. and Cohen, I. (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 345(6197) 647–650.
  39. Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K. (2004) Metamaterials and negative refractive index. Science, 305(5685) 788–792.
  40. Sokolowski, J. and Zolésio, J.P. (1992) Introduction to Shape Optimization. Springer-Verlag, Berlin.
  41. Sokolowski, J. and Zochowski, A. (1999) On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4) 1251–1272.
  42. Spadoni, A. and Ruzzene, M. (2012) Elastostatic micropolar behavior of a chiral auxetic lattice. Journal of the Mechanics and Physics of Solids, 60(1) 156–171.
  43. Vianello, M. (1997) An integrity basis for plane elasticity tensors. Archives of Mechanics, 49(1) 197–208.
  44. Voigt, W. (1910) Lehrbuch der Kristallphysik (mit ausschluss der Kristalloptik). BG Teubner, 34.
  45. Verchery, G. (1982) Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: J-P. Boehler, ed., Mechanical Behavior of Anisotropic Solids /Comportement Mécanique des Solides Anisotropes. Martinus Nijho Publishers & Editions du CNRS, 93–104.
  46. Wang, P., Casadei, F., Shan, S., Weaver, J.C. and Bertoldi, K. (2014) Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1) 014301.
  47. Whitaker, S. (1985) A simple geometrical derivation of the spatial averaging theorem. Chemical Engineering Education, 19(1) 18–52.
  48. Whitaker, S. (2013) The Method of Volume Averaging. Springer Science & Business Media. 13.
  49. Yang, X.Y., Huang, X., Rong, J.H. and Xie, Y.M. (2013) Design of 3D orthotropic materials with prescribed ratios for effective Young’s moduli. Computational Materials Science, 67 229–237.
  50. Yera, R., Rossi, N., Mendez, C.G. and Huespe, A.E. (2020) Topology design of 2D and 3D elastic material microarchitectures with crystal symmetries displaying isotropic properties close to their theoretical limits. Applied Materials Today, 18 100456.
DOI: https://doi.org/10.2478/candc-2024-0006 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 109 - 140
Submitted on: Jun 1, 2024
|
Accepted on: Aug 1, 2024
|
Published on: Jan 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Xuan-Nam Do, Valentin Calisti, Jean-François Ganghoffer, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.