Have a personal or library account? Click to login
Shape and topological derivatives as Hadamard semidifferentials Cover

Shape and topological derivatives as Hadamard semidifferentials

Open Access
|Jan 2025

References

  1. Absil, P.-A., Mahony, R., and Sepulchre, R. (2008) Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, N.J., Woodstock.
  2. Assouad, P. (1983) Plongements Lipschitziens dans Rn. Bull. Soc. Math. France 111, 429–448.
  3. Aubin, J.P. and Frankowska, H. (1990) Set-Valued Analysis. Birkhäuser, Boston.
  4. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., and Siskind, J.M. (2018) Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18, 1–43.
  5. Bolte, J. and Pauwels, E. (2021) Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Mathematical Programming: Series A and B. 188 (1), 19–51.
  6. Delfour, M.C. (2016) Differentials and semidifferentials for metric spaces of shapes and geometries. In: System Modeling and Optimization, L. Bociu, J.-A. Désidéri and A. Habbal, eds., 230–239, Springer International Publishing AG, Switzerland.
  7. Delfour, M.C. (2018a) Topological derivative: a semidifferential via the Minkowski content. Journal of Convex Analysis 25 (3), 957–982.
  8. Delfour, M.C. (2018b) Control, shape, and topological derivatives via minimax differentiability of Lagrangians. In: Numerical Methods for Optimal Control Problems. M. Falcone, R. Ferretti, L. Grüne, W. McEneaney, eds., 137–164, Springer INdAM Series 29, Springer, Cham, Switzerland.
  9. Delfour, M.C. (2020a) Introduction to Optimization and Hadamard Semi-differential Calculus, 2nd ed. SIAM, Philadelphia, PA.
  10. Delfour, M.C. (2020b) Hadamard semidifferential of functions on an unstructured subset of a TVS. J. Pure Appl. Funct. Anal. 5 (5), 1039–1072.
  11. Delfour, M.C. (2023a) One-sided Derivative of Parametrized Minima for Shape and Topological Derivatives. SIAM J. Control. Optim. 61 (3), 1322–1349.
  12. Delfour, M.C. (2023b) Hadamard semidifferential of continuous convex functions. J. Pure and Applied Functional Analysis 8 (5), 1341–1356.
  13. Delfour, M.C. and Huot-Chantal, F. (2019) On the figure of columns of Lagrange revisited. J. Convex Anal. (3)26, 855–876.
  14. Delfour, M.C. and Zolésio, J.P. (2011) Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization, 2nd ed. SIAM, Philadelphia, PA.
  15. Edelman, A., Arias, T.A. and Smith, S.T. (1998) The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (2), 303–353.
  16. Evans, L.C. and Gariepy, R.F. (1992) Measure Theory and the Properties of Functions. CRC Press, Boca Raton, FL.
  17. Fréchet, M. (1937) Sur la notion de différentielle. Journal de Mathématiques Pures et Appliquées 16, 233–250.
  18. Gromov, M. (1991) Geometric Group Theory, volume 2: Asymptotic Invariants of Infinite Groups. London Mathematical Society Lecture Note Series, 182, Cambridge University Press.
  19. Horváth, J. (1966) Topological Vector Spaces and Distributions, Vol. I. Addison-Wesley, Reading, MA.
  20. Huot-Chantal, F. (2018) Sur la figure des colonnes de Lagrange revisité. Mémoire, Dép. de Mathématiques et de Statistique, Université de Montréal, Canada.
  21. Ji, M. and Klinowski, J. (2006) Taboo evolutionary programming: a new method of global optimization. Proc. R. Soc. A 462, 3613–3627.
  22. Lang, S. (1969) Analysis II. Addison–Wesley Publishing Company, Reading, Mass.
  23. Lange, K. (2024) A tutorial on Hadamard semidifferentials. Foundations and Trends in Optimization 6 (1), 1–62.
  24. Marsden, J.E. and Ratiu, T.S. (1994) Introduction to Mechanics and Symmetry. Springer-Verlag, New York, Berlin.
  25. Michor, P.W. and Mumford, D. (2013) A zoo of diffeomorphism groups on ℝn. Ann. Glob. Anal. Geom. 44 (4), 529–540.
  26. Neidinger, R. D. (2010) Introduction to automatic differentiation and matlab object-oriented programming. SIAM Review, 52, 545–563.
  27. Pansu, P. (1989) Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. 129 (2), 1–60.
  28. Poinsot, L. (2017) Lipschitz groups and Lipschitz maps. International Journal of Group Theory 6 (1), 9–16.
  29. Rudin, W. (1976) Principles of Mathematical Analysis. McGraw–Hill, New York.
DOI: https://doi.org/10.2478/candc-2024-0004 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 43 - 75
Submitted on: Mar 1, 2024
Accepted on: Jul 1, 2024
Published on: Jan 17, 2025
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Michel C. Delfour, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Volume 53 (2024): Issue 1 (March 2024)