References
- A
seev , S., Krastanov , M.and Veliov , V. (2017) Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal., .(3):395–409. - A
zmi , B., Kunisch , K.and Rodrigues , S. (2021) Saturated feedback stabilizability to trajectories for the Schlögl parabolic equation. IEEE Transactions on Automatic Control, 68(12), 7089–7103. - B
asco , V., Cannarsa , P.and Frankowska , H. (2018) Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, .(3-4):535–555. - C
arlson , D., Haurie , A.and Leizarowitz , A. (1991) Infinite Horizon Optimal Control. Deterministic and Stochastic Systems. Springer-Verlag, Berlin. Second revised and enlarged edition of the 1987 original. - C
asas , E. (2012) Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim., 50(4):2355–2372. - C
asas , E., Herzog , R.and Wachsmuth , G. (2012) Optimality conditions and error analysis of semilinear elliptic control problems with .1 cost functional. SIAM J. Optim., 22(3):795–820. - C
asas , E., Herzog , R.and Wachsmuth , G. (2017) Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var., 23:263–295. - C
asas , E.and Kunisch , K. (2022) Infinite horizon optimal control problems for a class of semilinear parabolic equations. SIAM J. Control Optim., 60(4):2070–2094. - C
asas , E.and Kunisch , K. (2023a) Infinite horizon optimal control for a general class of semilinear parabolic equations. Appl. Math. Optim., 88: Paper No. 47, 36. - C
asas , E.and Kunisch , K. (2023b) Infinite horizon optimal control problems with discount factor on the state. Part II: Analysis of the control problem. SIAM J. Control Optim., 61(3):1438–1459. - C
asas , E.and Kunisch , K. (2024a) First and second order optimality conditions for the control of infinite horizon Navier Stokes equations. Optimization. To appear in CPAA. - C
asas , E.and Kunisch , K. (2024b) Space-time .∞-estimates for solutions of infinite horizon semilinear parabolic equations. 12 June 2024. DOI: 10.1080/02331934.2024.2358406. - C
asas , E.and Mateos , M. (2020) Critical cones for sufficient second order conditions in pde constrained optimization. SIAM J. Optim., 30(1):585–603. - C
asas , E., Mateos , M.and Rösch , A. (2019) Error estimates for semilinear parabolic control problems in the absence of Tikhonov term. SIAM J. Control Optim., 57(4):2515–2540. - C
asas , E.and Tröltzsch , F. (2015) Second order optimality conditions and their role in pde control. Jahresber Dtsch Math-Ver, 117(1):3–44. - C
asas , E.and Tröltzsch , F. (2016) Second order optimality conditions for weak and strong local solutions of parabolic optimal control problems. Vietnam J. Math., 44(1):181–202. - D
isser , K.,ter Elst , A. F. M.and Rehberg , J. (2017) Hölder estimates for parabolic operators on domains with rough boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17(1):65–79. - D
unn , J. (1998) On second order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces. In: A. Fiacco, ed., Mathematical Programming with Data Perturbations, 83–107, New York. Marcel Dekker. - H
alkin , H. (1974) Necessary conditions for optimal control problems with infinite horizons. Econometrica, 42(2):267–272. - M
aurer , H.and Zowe , J. (1979) First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming, 16: 98–110.