References
- A
nh , N. L. H.and Khanh , P. Q. (2013) Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. Journal of Optimization Theory and Applications, 158, 363-384. - A
nh , N. L. H. (2017a) Sensitivity analysis in constrained set-valued optimization via Studniarski derivatives. Positivity, 21, 255–272. - A
nh , N. L. H. (2017b) Some results on sensitivity analysis in set-valued optimization. Positivity, 21, 1527–1543. - A
nh , N. L. H.and Thoa , N. T. (2020) Calculus rules of the generalized contingent derivative and applications to set-valued optimization. Positivity, 24, pp. 81–94. - A
ubin , J. P.and Frankowska , H. (1990) Set-Valued Analysis. Birkhäuser, Boston. - B
onnans , J. F.and Shapiro , A. (2000) Perturbation Analysis of Optimization Problems. Springer, New York. - C
huong , T. D. (2011) Clarke coderivatives of efficient point multifunctions in parametric vector optimization. Nonlinear Analysis, 74, 273–285. - C
huong , T. D. (2013a) Derivatives of the efficient point multifunction in parametric vector optimization problems. Journal of Optimization Theory and Applications. 156, 247-265. - C
huong , T. D. (2013b) Normal subdifferentials of efficient point multi-functions in parametric vector optimization. Optimization Letters, 7, 1087–1117. - C
huong , T. D.and Yao , J.-C. (2009) Coderivatives of efficient point multi-functions in parametric vector optimization. Taiwanese Journal of Mathematics, 13, 1671-1693. - C
huong , T. D.and Yao , J.-C. (2010) Generalized Clarke epiderivatives of parametric vector optimization problems. Journal of Optimization Theory and Applications, 147, 77-94. - C
huong , T. D.and Yao , J.-C. (2013a) Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization. Journal of Global Optimization, 57, 1229–1243. - C
huong , T. D.and Yao , J.-C. (2013b) Isolated calmness of efficient point multifunctions in parametric vector optimization. Journal of Nonlinear and Convex Analysis, 14, 719-734. - D
iem , H. T. H., Khanh , P. Q.and Tung , L. T. (2014) On higher-order sensitivity analysis in nonsmooth vector optimization. Journal of Optimization Theory and Applications, 162, 463–488. - H
uy , N. Q.and Lee , G. M. (2007) On sensitivity analysis in vector optimization. Taiwanese Journal of Mathematics, 11, 945-958. - H
uy , N. Q.and Lee , G. M. (2008) Sensitivity of solutions to a parametric generalized equation. Set-Valued and Variational Analysis, 16, 805–820. - K
han , A., Tammer , C.and Zălinescu , C. (2015) Set-Valued Optimization: An Introduction with Applications. Springer, Berlin. - K
uk , H., Tanino , T.and Tanaka , M. (1996) Sensitivity analysis in parameterized convex vector optimization. Journal of Mathematical Analysis and Applications, 202, 511–522. - L
ee , G. M.and Huy , N. Q. (2006) On proto-differentiability of generalized perturbation maps. Journal of Mathematical Analysis and Applications, 324, 1297–1309. - L
evy , A. B.and Rockafellar , R. T. (1994) Sensitivity analysis of solutions to generalized equations. Transactions of the American Mathematical Society, 345, 661–671. - L
i , S. J.and Liao , C. M. (2012) Second-order differentiability of generalized perturbation maps. Journal of Global Optimization, 52, 243–252. - L
i , S. J., Sun , X. K.and Zhai , J. (2012) Second-order contingent derivatives of set-valued mappings with application to set-valued optimization. Applied Mathematics and Computation, 218, 6874–6886. - L
uc , D. T. (1989) Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems. 319, Springer-Verlag, Berlin. - L
uc , D. T., Soleimani -damaneh , M.and Zamani , M. (2018) Semi-differentiability of the marginal mapping in vector optimization. SIAM Journal on Optimization, 28, 1255–1281. - M
ordukhovich , B. S. (2006a) Variational Analysis and Generalized Differentiation. I: Basic Theory. Springer, Berlin. - M
ordukhovich , B. S. (2006b) Variational Analysis and Generalized Differentiation. II: Applications. Springer, Berlin. - M
ordukhovich , B. S. (2018) Variational Analysis and Applications. Springer, New York. - P
ham , T. H. (2022) On generalized second-order proto-differentiability of the Benson proper perturbation maps in parametric vector optimization problems. Positivity, 26, 1-36. - P
ham , T. H. (2023a) On second-order semi-differentiability of index γ of perturbation maps in parametric vector optimization problems. Asia-Pacific Journal of Operational Research, 40, 1-38. - P
ham , T. H. (2023b) Generalized higher-order semi-derivative of the perturbation maps in vector optimization, Japan Journal of Industrial and Applied Mathematics, 40, 929–963. - P
ham , T.Hand Nguyen , T. S. (2022) On second-order radial-asymptotic proto-differentiability of the Borwein perturbation maps. RAIRO - Operations Research, 56, 1373–1395. - R
ockafellar , R. T. (1989) Proto-differentiablility of set-valued mappings and its applications in optimization. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 6, 449–482. - R
ockafellar , R. T.and Wets , R. J. B. (2009) Variational Analysis. Springer, Berlin. - S
hi , D. S. (1991), Contingent derivative of the perturbation map in multiobjective optimization. Journal of Optimization Theory and Applications, 70, 385–396. - S
hi , D. S. (1993) Sensitivity analysis in convex vector optimization. Journal of Optimization Theory and Applications, 77, 145–159. - S
un , X. K.and Li , S. J. (2011) Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optimization Letters, 5, 601–614. - S
un , X. K.and Li , S. J. (2014) Generalized second-order contingent epi-derivatives in parametric vector optimization problem. Journal of Global Optimization, 58, 351-363. - T
anino , T. (1988a) Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications. 56, 479–499. - T
anino , T. (1988b) Stability and sensitivity analysis in convex vector optimization. SIAM Journal on Control and Optimization, 26, 521–536. - T
ung , L. T. (2017a) Second-order radial-asymptotic derivatives and applications in set-valued vector optimization. Pacific Journal of Optimization, 13, 137–153. - T
ung , L. T. (2017b) Variational sets and asymptotic variational sets of proper perturbation map in parametric vector optimization. Positivity, 21, 1647–1673. - T
ung , L. T. (2018) On second-order proto-differentiability of perturbation maps. Set-Valued and Variational Analysis, 26, 561–579. - T
ung , L. T. (2020) On higher-order proto-differentiability of perturbation maps. Positivity, 24, 441–462. - T
ung , L. T. (2021) On higher-order proto-differentiability and higher-order asymptotic proto-differentiability of weak perturbation maps in parametric vector optimization. Positivity, 25, 579–604. - T
ung , L. T. (2021) On second-order composed proto-differentiability of proper perturbation maps in parametric vector optimization problems. Asia-Pacific Journal of Operational Research, 38, 2050040. - T
ung , L. T.and Pham , T. H. (2020a) Sensitivity analysis in parametric vector optimization in Banach spaces via τw−contingent derivatives. Turkish Journal of Mathematics, 44, 152–168. - T
ung , L. T.and Pham , T. H. (2020b) On generalized τw-contingent epi-derivatives in parametric vector optimization problems. Applied Set-Valued Analysis and Optimization, 2, 152–168. - W
ang , Q. L., Li , S. Jand Teo , K. L. (2010) Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization. Optimization Letters, 4, 425–437. - W
ang , Q. L.and Li , S. J. (2011) Second-order contingent derivative of the perturbation map in multiobjective optimization. Journal of Fixed Point Theory and Applications, 857520. - W
ang , Q. L.and Li , S. J. (2012) Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization. Optimization Letters, 6, 731–748.