Have a personal or library account? Click to login
Network optimality conditions Cover

References

  1. Alekseev, V.M., Tikhomirov, V.M. and Fomin, S.V. (1979) Optimal’noe Upravlenie [Optimal Control]. Nauka, Moscow [in Russian].
  2. Dmitruk, A. V. and Kaganovich, A. M. (2008) The hybrid maximum principle is a consequence of Pontryagin maximum principle. Systems & Control Letters, 57(11): 964—970.
  3. Dmitruk, A. V. and Kaganovich, A.M. (2011) Maximum principle for optimal control problems with intermediate constraints. Computational Mathematics and Modeling, 22: 180—215.
  4. Dubovitskii, A. Y. and Milyutin, A. A. (1965) Extremum problems in the presence of restrictions. Zh. Vychisl. Mat. Mat. Fiz, 5(3): 395–453.
  5. Gugat, M. and Herty, M. (2011) Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM: Control, Optimisation and Calculus of Variations, 17(1): 28—51.
  6. Gugat, M. and Herty, M. (2020) Modeling, control, and numerics of gas networks. In: Handbook of Numerical Analysis, 23, 59-–86.
  7. Gugat, M., Qian, M. and Sokołowski, J. (2023) Topological derivative method for control of wave equation on networks. 27th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2023, 320–325 doi`: 10.1109/MMAR58384.2023.10242484.
  8. Leugering, G., Rodriguez, Ch. and Wang, Y. (2011) Nodal profile control for networks of geometrically exact beams. Journal de Mathématiques Pures et Appliquées, 155: 111—139.
  9. Maurer, H. and Pickenhain, S. (1995) Second-order sufficient conditions for control problems with mixed control-state constraints. Journal of Optimization Theory and Applications, 86: 649—667.
  10. Milyutin, A.A. and Osmolovskii, N. P. (1998) Calculus of Variations and Optimal Control. Translations of Mathematical Monographs, 180. American Mathematical Society, Providence.
  11. Milyutin, A.A., Dmitruk, A.V. and Osmolovskii, N.P. (2004) Maximum Principle in Optimal Control (Princip Maksimuma v Optimal’nom Upravlenii, in Russian). Lomonosov Moscow State University, Faculty of Mathematics and Mechanics, Moscow.
  12. Osmolovskii, N. P. and Maurer, H. (2012) Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. SIAM, Philadelphia.
  13. Pontryagin, L.S., Boltyanskii, Vo. G., Gamkrelidze, R.V. and Mishchenko, E.F. (1961) Mathematical Theory of Optimal Processes [in Russian]. Nauka, Moscow.
  14. Rodriguez, Ch. and Leugering, G. (2020) Boundary feedback stabilization for the intrinsic geometrically exact beam model. SIAM Journal on Control and Optimization, 58(6): 3533—3558.
  15. Sokołowski, J. and Zolésio, J.-P. (1992) Introduction to Shape Optimization. Springer Series in Computational Mathematics. Springer-Verlag, Berlin.
DOI: https://doi.org/10.2478/candc-2023-0035 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 129 - 180
Submitted on: Oct 1, 2023
Accepted on: Dec 1, 2023
Published on: Apr 11, 2024
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Nikolai P. Osmolovskii, Meizhi Qian, Jan Sokołowski, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.