Have a personal or library account? Click to login
Clustering of Data Represented by Pairwise Comparisons Cover

Clustering of Data Represented by Pairwise Comparisons

By: Sergey Dvoenko  
Open Access
|Mar 2023

References

  1. Aivazyan, S. A. et al. (1989) Applied Statistics. Classification and Reduction of Dimensionality [in Russian]. FiS, Moscow.
  2. Aizerman, M. A., Braverman, E. M. and Rozonoer, L. I. (1970) The Method of Potential Functions in Machine Learning Theory [in Russian]. Nauka, Moscow.
  3. Bognar, J. (1974) Indefinite Inner Product Spaces. Springer-Verlag, New York.
  4. Braverman, E. M. (1970) Methods of extremal grouping of parameters and problem of apportionment of essential factors [in Russian]. Avtomat. i Telemekh. 1, 123–132.
  5. Braverman, E. M. et al. (1971) Diagonalization of the relation matrix and detecting hidden factors [in Russian]. Trans. Inst. of Control Sciences. 1st Issue ‘Problems of increasing of automata possibilities.” ICS, Moscow, 42–79.
  6. Braverman, E. M. and Muchnik, I. B. (1983) Structured Methods of Empirical Data Processing [in Russian]. Nauka, Moscow.
  7. Diday, E., Bochi, S., Brossier, G. and Celeux, G. (1979) Optimisation en Classification Automatique. 2. Institut national de recherche en informatique et en automatique (INRIA), Le Chesnay (in French).
  8. Duda, R. O. and Hart, P. E. (1973) Pattern Classification and Scene Analysis. Wiley, New York.
  9. Duda, R. O., Hart, P. E. and Stork, D. G. (2000) Pattern Classification.Wiley, New York.
  10. Dvoenko, S. D. (2001) Restoration of spaces in data by the method of non-hierarchical decompositions. Automation and Remote Control. 62, 467– 473. //doi.org/10.1023/A:1002814429456
  11. Dvoenko, S. D. (2009a) Clustering and separating of a set of members in terms of mutual distances and similarities. Trans. on MLDM. IBaI Publishing, 2(2), 80–99.
  12. Dvoenko, S. D. (2009b) Clustering of a set described by paired distances and closeness between its elements [in Russian]. Sib. J. of Industr. Math. 12 (1), 61–73.
  13. Dvoenko, S. D. (2011) On clustering of a set of members by distances and similarities. Proc. of 11th Int. Conf, on Pattern Recognition and Information Processing (PRIP’2011). BSUIR, 104–107.
  14. Dvoenko, S. (2014) Meanless k-means as k-meanless clustering with the bipartial approach. Proc. of 12th Int. Conf. on Pattern Recognition and Information Processing (PRIP’2014). UIIP NASB, 50–54.
  15. Dvoenko, S. and Owsinski, J. (2019) The permutable k-means for the bipartial criterion. Informatica. 43 (2), 253–262. //doi.org/10.31449/inf.v 43i2.2090
  16. Dvoenko, S. D. and Pshenichny, D. O. (2018) On metric correction and conditionality of raw featureless data in machine learning. Pattern Recognit. Image Anal. 28, 595–604. //doi.org/10.1134/S1054661818040089
  17. Dvoenko, S. D. and Pshenichny, D. O. (2021) Rank aggregation based on new types of the Kemeny’s median. Pattern Recognit. Image Anal. 31, 185–196. //doi.org/10.1134/S1054661821020061
  18. Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Ann. Eugenics. 7 (2), 179-188.
  19. Friedman, H. P. and Rubin, J. (1967) On some invariant criteria for grouping data. Journal of the American Statistical Association 62 (320), 1159– 1178. //doi.org/10.1080/01621459.1967.10500923
  20. Harman, H. H. (1976) Modern Factor Analysis. University of Chicago Press, Chicago.
  21. Hartigan, J. A. and Wong, M. A. (1979) Algorithm AS 136: A k-means clustering algorithm. J. Roy. Soc. 28 (1), 100–108. //doi.org/10.2307/2346830
  22. Kemeny, J. (1959) Mathematics without numbers. Daedalus, 88(4), 577–591.
  23. Litvak, B. G. (1982) Expert Information: Methods of Acquisition and Analysis [in Russian]. Radio i Svyaz, Moscow.
  24. Lumel’sky, V. Ya. (1970) Grouping of parameters on the basis of communication matrices [in Russian]. Avtomat. i Telemekh. 1, 133–143.
  25. Luce, R. D. (1959) Individual Choice Behavior: A Theoretical Analysis. Wiley, New York.
  26. Mercer, J. (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc., London.
  27. Owsiński, J. W. (2020) Data Analysis in Bi-partial Perspective: Clustering and Beyond. SCI 818, Springer. //doi.org/10.1007/978-3-030-13389-4
  28. Pekalska, E. AND Duin R. P. W. (2005) The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Sngapore.
  29. Rosenblatt, F. (1962) Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington.
  30. Schlesinger, M. (1965) About spontaneous recognition of patterns [in Russian]. Reading Automations. Kiev, 38–45.
  31. Späth, H. (1983) Cluster-Formation und -Analyse: Theorie, FORTRAN-Programme und Beispiele [in German]. R. Oldenbourg Verlag, München– Wien.
  32. Torgerson, W. S. (1958) Theory and Methods of Scaling. Wiley, New York.
  33. Ward, J. (1963) Hierarchical grouping to optimize an objective function. J. American Statist. Ass. 58 (301), 236–244. //doi.org/10.1080/01621459.1963.10500845
  34. Young, G. and Householder, A. S. (1938) Discussion of set of points in terms of their mutual distances. Psychometrica. 3, 19–22. //doi.org/10.1007/BF02287916
  35. Zagoruiko, N. G. (1999) Applied Methods of Data and Knowledge Analysis [in Russian]. IM SBRAS, Novosibirsk.
DOI: https://doi.org/10.2478/candc-2022-0021 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 343 - 387
Submitted on: Aug 1, 2022
Accepted on: Sep 1, 2022
Published on: Mar 22, 2023
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sergey Dvoenko, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.