Have a personal or library account? Click to login
Characterizations and Classification of Paraconvex Multimaps Cover

Characterizations and Classification of Paraconvex Multimaps

Open Access
|Mar 2023

References

  1. Aubin, J.P and Ekeland, I. (1984) Applied Nonlinear Analysis. Wiley Interscience.
  2. Barbu, V. and Precupanu, Th. (1978) Convexity and Optimization. Sijthoff-Noordhoff.
  3. Bressan, A. (2007) Differential inclusions and the control of forest fires. J. Diff. Equa. 243 179-207.
  4. Bressan, A. and Zhang, D. (2012) Control Problems for a Class of Set Valued Evolutions. Set Valued Var. Anal. 20: 581-601.
  5. Bot, R.I. and Csetnek, E.R. (2012) Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61(1), 35-65.
  6. Cannarsa, P. and Sinestrari, C. (2004) Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhäuser, Basel.
  7. Daniilis, A. and Malick, J. (2005) Filling the gap between Lower-C2 and Lower-C2 functions. J. Convex Analysis, 12, 2, 315-320.
  8. Daniilis, A. and Georgiev, P. (2004) Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291 292-301.
  9. Georgiev, P. (1997) Submonotone mappings in Banach spaces and applications. Set Valued Analysis 5, 1-35.
  10. Goeleven, D and Motreanu, D. (2003) Variational and Hemivariational Inequalities: Volume II, Unilateral Problems. Kluwer Academic Publishers.
  11. Huang, H and Li, R. (2011) Global Error Bounds for γ-paraconvex Multifunctions. Set-Valued Var. Anal . 19 (3), 487-504 .
  12. Huang, H. (2012) Coderivative conditions for Error Bounds of γ-paraconvex Multifunctions. Set Valued Var. Anal. 20:567-579.
  13. Jofré, A., Luc, D.T. and Théra, M. (1998) ε-Subdifferential and ε-monoto-nicity. Nonlinear Analysis, 33, 71-90.
  14. Jourani, A. (1996) Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions. Control and Cybernetics 25, 721-737.
  15. Lasry, J.M and Lions, P.L. (1986) A remark on regularization in Hilbert spaces. Israel. J. Math., 55, 257-266.
  16. Lebourg, G. (1979) Generic differentiability of Lipschitzian functions. Trans. Amer. Math. Soc . 256, 125-144.
  17. Luc, D.T., Ngai, H.V. and Théra, M. (1999) On ε-convexity and ε-monoto-nocity. In: A. Ioffe, S. Reich and I. Shafrir (eds), Calculus of Variation and Differential Equations. Research Notes in Math. Chapman & Hall, 82-100.
  18. Mokhtar-Kharroubi, H. (1985) Fonction d’appui á un ensemble et Analyse Multivoque. Preprint ANO 154. Lille I.
  19. Mokhtar-Kharroubi, H. (1987) Sur quelques Fonctions Marginales et leurs Applications. Chapitre I de Thése de Doctorat és Sciences (Lille I), France.
  20. Mokhtar-Kharroubi, H. (2017) Convex and convex-like optimization over a range inclusion problem and first applications. Decisions in Economics and Finance, 40(1).
  21. Ngai, H.V., Luc, D.T. and Théra, M. (2000) Approximate convex functions. J. Nonlinear Convex Anal, 1(2), 155-176.
  22. Ngai, H.V. and Penot, J.P. (2008) Paraconvex functions and paraconvex sets. Studia Math. 184 (1), 1-29.
  23. Páles, Zs. (2008) Approximately Convex Functions. Summer School on Generalized Convex Analysis, Kaohsiung, Taiwan, July 15-19, 2008. www:genconv.org/files/Kaohsiung_Pales2.pdf
  24. Penot, J.P. (1996) Favorable classes of Mapping and Multimapping in Nonlinear Analysis and Optimization. J. Convex Analysis, 3 (1), 97-116.
  25. Penot, J.P. and Volle, M. (1990) On strongly convex and paraconvex dualities. In: Generalized Convexity and Fractional Programming with Economic Applications, Proc. Workshop. Pisa/Italy 1988. Lect. Notes Econ. Math. Syst., 345, 198-218.
  26. Rockafellar, R.T. (1982) Favorable classes of Lipschitz continuous functions in subgradient optimization. In: E. Nurminsky, ed., Progress in Nondifferentiable Optimization, IIASA, Austria, 125-144.
  27. Rolewicz, S. (1999) On α(.)-monotone multifunction and differentiability of γ-paraconvex functions. Studia Math. 133(1), 29-37.
  28. Rolewicz, S. (2000) On α()-paraconvex and strongly α()-paraconvex functions. Control and Cybernetics 29 (1), 367-377.
  29. Rolewicz, S. (2001) On uniformly approximate convex and strongly α-paraconvex functions. Control and Cybernetics 30(3), 323-330.
  30. Rolewicz, S. (2005) Paraconvex analysis. Control and Cybernetics 34(3), 951-965.
  31. Springarn, J.E. (1981) Submonotone subdifferential of Lipschitz functions. Trans. Amer.Math. Soc., 264, 77-89.
  32. Vial, J.P. (1983) Strong and weak convexity of sets and functions. Math. Oper. Res, 8 (2), 231-259.
DOI: https://doi.org/10.2478/candc-2022-0019 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 303 - 325
Submitted on: Jan 1, 2022
Accepted on: Apr 1, 2022
Published on: Mar 22, 2023
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hocine Mokhtar-Kharroubi, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.