Have a personal or library account? Click to login
Similarity measures for Atanassov’s intuitionistic fuzzy sets: some dilemmas and challenges Cover

Similarity measures for Atanassov’s intuitionistic fuzzy sets: some dilemmas and challenges

Open Access
|Aug 2022

References

  1. Atanassov, K. (1983) Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.10.1007/978-3-7908-1870-3
  3. Atanassov, K.T. (2012) On Intuitionistic Fuzzy Sets Theory. Springer.10.1007/978-3-642-29127-2
  4. Atanassova, V. (2004) Strategies for Decision Making in the Conditions of Intuitionistic Fuzziness. Int. Conf. 8th Fuzzy Days, Dortmund, Germany, 263–269.
  5. Bujnowski, P., Szmidt, E. and Kacprzyk, J. (2014) Intuitionistic Fuzzy Decision Trees - a new Approach. In: L. Rutkowski et al., eds.: Artificial Intelligence and Soft Computing, Part I. Springer, Switzerland, 181–192.10.1007/978-3-319-07173-2_17
  6. Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M. (2006) An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. IPMU’2006, 2383–2390.
  7. Cross, V. and Sudkamp, T. (2002) Similarity and Compatibility in Fuzzy Set Theory. Physica-Verlag.10.1007/978-3-7908-1793-5
  8. Grünbaum, B. (1967) Convex Polytopes. Wiley-Interscience, New York.
  9. Pal, N.R. and Pal, S.K. (1991) Entropy: a new definition and its applications. IEEE Trans. on Systems, Man, and Cybernetics, 21, 5, 1260–1270.10.1109/21.120079
  10. Reeves, J. (2020) The Science and Religion Dialogue as Natural Philosophy. Metanexus, https://www.metanexus.net/science-and-religion-dialogue-naturalphilosophy/.
  11. Roeva, O. and Michalikova, A. (2013) Generalized net model of intuitionistic fuzzy logic control of genetic algorithm parameters. In: Notes on IFSs, 19 (2), 71–76.
  12. Szmidt, E. (2014) Distances and Similarities in Intuitionistic Fuzzy Sets. Springer.10.1007/978-3-319-01640-5
  13. Szmidt, E. and Baldwin, J. (2006) Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. 2006 IEEEWorld Congress on Computational Intelligence, 237–243.10.1109/FUZZY.2006.1681691
  14. Szmidt, E. and Kacprzyk, J. (1997) On measuring distances between intuitionistic fuzzy sets. Notes on IFS, 3(4), 1–13.
  15. Szmidt, E. and Kacprzyk, J. (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518.10.1016/S0165-0114(98)00244-9
  16. Szmidt, E. and Kacprzyk, J. (2001) Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118 (3), 467–477.10.1016/S0165-0114(98)00402-3
  17. Szmidt, E. and Kacprzyk, J. (2004a) Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. IPMU 2004, 1405–1412.
  18. Szmidt, E. and Kacprzyk, J. (2004b) A Concept of Similarity for Intuitionistic Fuzzy Sets and its use in Group Decision Making. 2004 IEEE Conf. on Fuzzy Systems, Budapest, 1129–1134.
  19. Szmidt, E. and Kacprzyk, J. (2005) Distances Between Intuitionistic Fuzzy Sets and their Applications in Reasoning In: S. K. Halgamuge and L. Wang, eds., Computational Intelligence for Modelling and Prediction, Springer, 101–116.10.1007/10966518_8
  20. Szmidt, E. and Kacprzyk, J. (2006) Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. IEEE IS’06, 716–721.10.1109/IS.2006.348507
  21. Szmidt, E. and Kacprzyk, J. (2007a) Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets. Applications of Fuzzy Sets Theory. LNAI 4578, Springer-Verlag, 291–297.10.1007/978-3-540-73400-0_36
  22. Szmidt, E. and Kacprzyk, J. (2007b) A New SimilarityMeasure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. 2007 IEEE Conf. on Fuzzy Systems, 481–486.
  23. Szmidt, E. and Kacprzyk, J. (2008a) Ranking alternatives expressed via intuitionistic fuzzy sets. 12th International Conference IPMU 2008, 1604–1611.10.1142/9789812799470_0043
  24. Szmidt, E. and Kacprzyk, J. (2008b) Using intuitionistic fuzzy sets in text categorization In: L. Rutkowski, R. Tadeusiewicz, L. A. Zadeh and J. M. Zurada (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. Lecture Notes in Computer Science, 5097, Springer, Berlin, Heidelberg, 351–362.10.1007/978-3-540-69731-2_35
  25. Szmidt, E. and Kacprzyk, J. (2009a) Amethod for ranking alternatives expressed via Atanassov’s intuitionistic fuzzy sets. In: K. T. Atanassov, O. Hryniewicz, J. Kacprzyk, M. Krawczak, Z. Nahorski, E. Szmidt and S. Zadrozny (Eds.): Advances in Fuzzy Sets, Intuitionistics Fuzzy Sets, Generalized Nets and Related Topics. Academic Publishing House EXIT, Warsaw 2009. Series: Challenging Problems of Science - Computer Science, 161–173.
  26. Szmidt, E. and Kacprzyk, J. (2008c) A new approach to ranking alternatives expressed via intuitionistic fuzzy sets. In: D. Ruan et al. (Eds.) Computational Intelligence in Decision and Control. World Scientific, 265–270.10.1142/9789812799470_0043
  27. Szmidt, E. and Kacprzyk, J. (2009b) Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria Decision Making Problem. NAFIPS 2009, Cincinnati, USA, IEEE, ISBN: 978-1-4244-4577-6.10.1109/NAFIPS.2009.5156417
  28. Szmidt, E. and Kacprzyk, J. (2009c) Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives. In: E. Rakus- Andersson, R. Yager, N. Ichalkaranje and L. C. Jain (Eds.) Recent Advances in decision Making, SCI 222. Springer-Verlag, 7–19.10.1007/978-3-642-02187-9_2
  29. Szmidt, E. and Kacprzyk, J. (2010a) Correlation between intuitionistic fuzzy sets. In: E. Hullermeier, R. Kruse and F. Hoffmann, eds., LNAI 6178 (Computational Intelligence for Knowledge-Based Systems Design), 169–177.10.1007/978-3-642-14049-5_18
  30. Szmidt, E. and Kacprzyk, J. (2010b) On an Enhanced Method for a More Meaningful Ranking of Intuitionistic Fuzzy Alternatives. Lecture Notes in Artificial Intelligence, 6113, Springer, 232–239.10.1007/978-3-642-13208-7_30
  31. Szmidt, E. and Kacprzyk, J. (2010c) The Spearman rank correlation coefficient between intuitionistic fuzzy sets. In: Proc. 2010 IEEE Int. Conf. on Intelligent Systems IEEE’IS 2010, London, 276–280.
  32. Szmidt, E. and Kacprzyk, J. (2011a) Intuitionistic fuzzy sets – Two and three term representations in the context of a Hausdorff distance. Acta Universitatis Matthiae Belii, Series Mathematics, 19, 19, 53–62. https://actamath.savbb.sk/pdf/acta1908.pdf
  33. Szmidt, E. and Kacprzyk, J. (2011b) The Kendall Rank Correlation between Intuitionistic Fuzzy Sets. In: Proc.: World Conference on Soft Computing, San Francisco, CA, USA, 23/05/2011-26/05/2011.10.2991/eusflat.2011.85
  34. Szmidt, E. and Kacprzyk, J. (2011c) The Spearman and Kendall rank correlation coefficients between intuitionistic fuzzy sets. In: Proc. 7th conf. European Society for Fuzzy Logic and Technology, Aix-Les-Bains, France, Antantic Press, 521–528.10.2991/eusflat.2011.85
  35. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2011a) Pearson’s coefficient between intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 17(2), 25–34.10.1007/978-3-642-23713-3_3
  36. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2011b) Pearson’s Correlation Coefficient between Intuitionistic Fuzzy Sets: an Extended Theoretical and Numerical Analysis. In: K. T. Atanassov et al. (Eds.) Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. SRI PAS, Warsaw, 223–236.10.1109/FUZZ-IEEE.2012.6250832
  37. Szmidt, E. and Kacprzyk, J. (2012a) A New Approach to Principal Component Analysis for Intuitionistic Fuzzy Data Sets. In: S. Greco et al. (Eds.), IPMU 2012, Part II, CCIS 298, 529–538, Springer-Verlag, Berlin Heidelberg.10.1007/978-3-642-31715-6_56
  38. Szmidt, E. and Kacprzyk, J. (2012b) On an Enhanced Method for a More Meaningful Pearson’s Correlation Coefficient between Intuitionistic Fuzzy Sets. ICAISC (1), 334–341.10.1007/978-3-642-29347-4_39
  39. Szmidt, E. and Kacprzyk, J. (2015) Two and three term representations of intuitionistic fuzzy sets: Some conceptual and analytic aspects. IEEE Int. Conf. on Fuzzy Systems FUZZ-IEEE 2015, 1–8.10.1109/FUZZ-IEEE.2015.7338003
  40. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2012a) Correlation between Intuitionistic Fuzzy Sets: Some Conceptual and Numerical Extensions. WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, 480–486.10.1109/FUZZ-IEEE.2012.6250832
  41. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2012b) Advances in Principal Component Analysis for Intuitionistic Fuzzy Data Sets. 2012 IEEE 6th International Conference “Intelligent Systems”, 194–199.
  42. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2020) Attribute Selection for Sets of Data Expressed by Intuitionistic Fuzzy Sets. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–7.10.1109/FUZZ48607.2020.9177530
  43. Szmidt, E., Kacprzyk, J. and Bujnowski, P. (2021) Three term attribute description of Atanassov’s Intuitionistic Fuzzy Sets as a basis of attribute selection. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–6.10.1109/FUZZ45933.2021.9494599
  44. Szmidt, E. and Kukier, M. (2006) Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets. IEEE IS’06, London, 722–727.10.1109/IS.2006.348508
  45. Szmidt, E. and Kukier, M. (2008a) A New Approach to Classification of Imbalanced Classes via Atanassov’s Intuitionistic Fuzzy Sets. In: Hsiao-Fan Wang (Ed.), Intelligent Data Analysis : Developing New Methodologies Through Pattern Discovery and Recovery. Idea Group, 85–101.10.4018/978-1-59904-982-3.ch005
  46. Szmidt, E. and Kukier, M. (2008b) Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: P. Chountas, I. Petrounias, J. Kacprzyk (Eds.): Intelligent Techniques and Tools for Novel System Architectures. Springer, Berlin Heidelberg, 455–471.10.1007/978-3-540-77623-9_26
  47. Tversky, A. (1977) Features of similarity. Psychol. Rev., 84, 327–352.
  48. Veltkamp, R.C. and Hagedoorn, M. (2000) Shape similarities, properties, and constructions. In: Advances in Visual Information Systems, Proc. 4th International Conference, VISUAL 2000, LNCS 1929, Springer, 467–476.
  49. Veltkamp, R. (2001a) Shape Matching: similarity measures and algorithms. Proc. Shape Modelling International, Italy, IEEE Press, 187–197.
  50. Veltkamp, R.C. (2001b) Shape Matching: Similarity Measures and Algorithms. UU-CS-2001-3, 1–17.
  51. Wang, X., De Baets, B. and Kerre, E. (1995) A comparative study of similarity measures. Fuzzy Sets and Systems, 73 (2), 259–268.10.1016/0165-0114(94)00308-T
  52. Zadeh, L.A. (1965) Fuzzy sets. Information and Control, 8, 338–353.10.1016/S0019-9958(65)90241-X
DOI: https://doi.org/10.2478/candc-2022-0016 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 249 - 266
Submitted on: Apr 1, 2022
Accepted on: Apr 1, 2022
Published on: Aug 12, 2022
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Eulalia Szmidt, Janusz Kacprzyk, Paweł Bujnowski, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.